
Programmatic Entropy:
Exploring the Most Prominent PRNGs

Jared Anderson, Evan Bause, Nick Pappas, Joshua Oberlin
A Recap of Randomness

Random number generating algorithms are rated by two primary
measures: entropy - the measure of disorder in the numbers created and
period - how long it takes before the PRNG begins to inevitably cycle its
pattern. While high entropy and a long period are desirable traits, it is
sometimes necessary to settle for a less intense method of random
number generation to not sacrifice performance of the product the PRNG
is required for. However, in the real world PRNGs must also be evaluated
for memory footprint, CPU requirements, and speed.

In this poster we will explore three of the major types of PRNGs, their
history, their inner workings, and their uses.

 The Mersene Twister
The Mersenne Twister is the most widely used general purpose

pseudorandom number generator today. A Mersenne prime is a prime
number that is one less than a power of two, and in the case of a
mersenne twister, is its chosen period length (most commonly 219937−1).
There are only 50 such numbers known to exist today, with the most
recent, 277,232,917-1, only being found on January 3rd of this year. Makoto
Matsumoto and Takuji Nishimura developed the algorithm in 1997 to
overcome the flaws found in older PRNGs, being the first PRNG to
provide high entropy, long period random number generation in little time.
Because of this, the Mersenne Twister is the default pseudorandom
number generator for software systems such as Microsoft Excel, GAUSS,
GNU, IDL, MATLAB, Python, R, and Ruby.

There are many reasons to choose the mersenne twister over other
PRNGs. As stated, it has a truly impressive speed and quality
combination, producing even 64-bit floats 20x faster than hardware based
solutions, while also passing statistical tests for randomness like TestU01
and Diehard. It is also patent-free, so it and variants of its base algorithm
can be used freely without worry of cost or expensive hardware.

The Mersenne Twister is, however, not a silver bullet for all PRNG
needs. While a variant, CryptMT, exists, it is normally not
cryptographically secure, disallowing its use where security is a major
concern such as password encryption or gambling. It also requires a
large state buffer of 2.5 KiB, and has mediocre throughput by modern
standards, meaning it shouldn’t be used on hardware with too little buffer
or in situations where large streams of random numbers are needed.

Mersenne Twister takes a seed which is initialized into a 624 x 32bit
integer state through multiplication, xor, and bit shifting. Then the state is
manipulated with a “twist” function. After the state has been twisted at
least once, the “temper” function can be applied to the state yielding up to
624 random numbers before it needs to be twisted again. Twist and
Temper functions use Xor, AND, and bit shifting for faster processing.

Linear congruential generators form a series of numbers using the
recurrence relation formula: Xn = (a Xn-1 + c) mod m
EX: a = 2, c = 3, m = 10, X0 = 5. Output: 5 3 9 1 5 3 9 1 5 3. . .

Notice that after four numbers have been generated in the previous
example, the sequence begins to repeat. This is due to a modular
arithmetic that forces wrapping of values into the desired range resulting
in the period of 4. The value that primarily affects the period of the
sequence is m, where larger m’s result in a much longer period.

Unfortunately, a long period does not guarantee a random sequence. A
sequence made from this formula can have sufficient randomness but a
very short period, or it can have a long period with an obviously non
random sequence. The most common way to work around this problem is
to remove c from the equation by making it 0. With c, the formula can be
referred to as being a mixed congruential generator. Removing c creates
a formula used for a pure multiplicative generator:
Xn = aXn-1 mod m

This results in a simpler algorithm, so many random number algorithms
use the second equation over the first.

An important note about the pure multiplicative generator formula is
that aXn-1 cannot generate 0, or every subsequent value will become 0.
This is not an issue with with mixed congruential generators (c is not
equal to 0) because if aXn-1 results in zero, the constant c would be
added to it.

A major advantage of Linear Congruential Generators is that they
require minimal memory and therefore are generally faster than other
PRNGs. They are ideal for when an application’s requirements for high
quality randomness are not essential.

Being faster than other PRNGs, however, makes it less efficient than
others. It is highly recommended to use a different more random
generator for high level applications. LCGs are much better suited for
smaller level applications, such as an environment like a video game
console.

In conclusion, LCGs better fit smaller applications where speed is of
critical value, and high levels of entropy are not.

Resources: https://en.wikipedia.org/wiki/Mersenne_Twister, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ewhat-is-mt.html, http://www.quadibloc.com/crypto/co4814.htm, http://www.eternallyconfuzzled.com/tuts/algorithms/jsw_tut_rand.aspx, https://en.wikipedia.org/wiki/Xorshift,
http://www.jstatsoft.org/v08/i14/paper, https://hackernoon.com/how-does-javascripts-math-random-generate-random-numbers-ef0de6a20131,
,

Xorshift random number generators are an extremely fast and
efficient type of PRNG discovered by George Marsaglia. An xorshift
PRNG works by taking the exclusive or (xor) of a computer word with a
shifted version of itself. For a single integer x, an xorshift operation can
produce a sequence of 232 - 1 random integers. For a pair of integers x,
y, it can produce a sequence of 264 - 1 random integers. For a triple x,
y, z, it can produce a sequence of 296 - 1, and so on.

An xorshift algorithm is incredibly useful because it's such a simple
algorithm, able to be written with only a few lines of code, and the
sequence it creates do very well on tests of randomness. It is one of the
fastest known PRNGs, being able to generate over 200 million random
numbers a second in most cases.

Some of the drawbacks of xorshift include its lack of cryptological
security. It also fails many tougher randomness tests, such as those of
TestU01's BigCrush suite, however this is true for all PRNGs based on
linear recurrence, including the Mersenne Twister. It has also been
described as being unreliable. However, all of its flaws are well known
and easily amenable.

Some variations of the xorshift include xorshift*, which applies a
nonlinear transformation to a normal xorshift operation. This increases
the period of the output, increasing its total randomness. Another
variation is xorshift+ which uses addition instead of multiplication as a
nonlinear transformation, which both increases the randomness and
speed of the algorithm since addition is a faster operation for the
arithmetic logic units of CPUs.

Xorshift
Linear Congruential Generators

