Transposon Mutagenesis of Stenotrophomonas Maltophilia Oak Ridge strain 02
Team Members: Haley Gianfrancesco, Hanna Gilligan, Gabriella Hosack Advisor: Dr. Jonathan Caguiat

Abstract

A multi-metal resistant strain of Stenotrophomonas maltophilia OR02 (S. maltophilia 02) grows when exposed to toxic salts of gold and selenite. An EZ Tn 5 transposome was introduced into S. maltophilia 02. Approximately 880 transformants were replica plated onto plates containing copper sulfate, sodium selenite, mercuric chloride, sodium arsenite, and M-9 minimal salts medium to see if the transposon interrupted genes required for selenite resistance, arsenite resistance,

12 mutants were discovered . Of the 12 mutants discovered 6 fai
12 mutants were discovered. Of and to grow selenite 1 failed grow ogrow on arsenic and selenite, 3 failed to grow selenite, 1 failed grow on failed to grow on minimal medium. The transposon contains a kanamycin resistance genes and an R6K γ replication origin. The genomic DNA from the mutants was purified, digested, ligated and transformed into E coli These transformants will contain new plasmids consisting of the These transformants bilt contain new plasmids consisting of the
transposon flanked by the interrupted genes. We expect DNA sequencing transposon flanked by the interrupted genes. We expect DNA sequencing
to identify genes involved in oxidative stress response, metal efflux, metal transformation (reduction and oxidation) and sequestration.

Introduction

The Y-12 plant at Oakridge, Tennessee played a vital role in th production of nuclear weapons processing uranium during World War II to
make atomic bombs. During the Cold War in the 1950s, the Y-12 plant make atomic bombs. During the Cold War in the 1950s, the Y-12 plant focused on processing lithium to make hydrogen bombs. In this process, a mercury was lost to the environment contaminating the nearby Fast Fork mercury was lost to the environment (EFPC) at the Y-12 plant ${ }^{1,2}$

Stenotrophomonas maltophilia ORO2 (S. maltophilia O2) is a gram negative bacterium, isolated from East Fork Poplar Creek and is resistant negative bacterium, isolated from East Fork Poplar Creek and is resistant
to metal salts of mercury, cadmium, copper, zinc gold and selenium ${ }^{3}$. Our goal is to study the metal resistance genes that are involved in the resistance mechanisms. For this purpose transposon mutagenesis of S maltophilia O 2 was used to identify genes that encode resistance to selenite and gold and that allow it to grow in M-9 minimal medium. Som of these interrupted genes were identified using a gene rescue technique.

Materials and Methods

Transposon Mutagenesis ${ }^{4}$
-Transposon - DNA segments which transfers itself from one part of the genome to another part of that genome.
-EZ-Tn5 transposome from Epicentre Biotechnologies was introduced into S. maltophilia 02 by electroporation - (Figure 1).
Cells were spread onto kanamycin plates (Figure 3).
Colonies that grew should have transposon inserts.
-The colonies were replica plated and screened for metal sensitivity. Confirmed mutants are recorded in Table 1.

Gene Rescue

-The digested DNA was ligated with T4 DNA ligase which circularized the digested DNA strands.
-The ligated DNA was transformed into E. coli and spread on kanamycin plates.

- Only circularized DNA fragments containing the transposon will grow. - DNA was purified from the selenite, and other metal sensitive colonies. -The purified DNA was partially digested using $B f u C$ I

Figure 1: Transposase Protein
Figure 2:Transposon Mutagenesis

Figure 3: Kanamycin
Plate Spread

Figure 4: Partial Digestion of Genomic DNA

Mutagenesis Results

Mutant	LB-Kan	M-9-CAA	R3A-Se 10	R3A-Hg 25	R3A-Cu 1	R3A-As 5	LB-Kan
BT 54A	+++	+++	+	+++	+++	+++	+++
BT 67A	+++	+++	-	+++	+++	-	+++
BT 94A	+++	+++	-	+++	+++	+	+++
BX 45A	+++	-	-	+++	-	+++	+++
BY 25A	+++	+++	-	+++	+++	-	+++
BY 80A	+++	+++	-	+++	+++	+++	+++
BZ 9A	+++	+++	-	+++	+++	+	+++
BZ 20A	+++	-	+++	+++	+++	+++	+++
CA 17A	+++	+++	-	+++	+++	+	+++
CA 18A	+++	+++	-	+++	+++	-	+++

Choose OhioFirst

Acknowledgement
Thank you to the Youngstown State University Department of Biological Sciences
for funding our research.

YOUNGSTOWN STATE UNIVERSITY

Sequencing and BLAST Analysis

Range1: 1932380 to	to 93894 centant	Grapics						
${ }_{\text {Score }}{ }_{\text {Scere }}$ bits(62)	${ }_{0}^{\text {Expoc }}$ 0.0							
guery 3								
Sbjec 932880								
Query ${ }^{123}$								
Sbjet 933000								
Query 183								
Sbjet 933060								

Conclusion

The selenite/arsenite-sensitive mutants, BT94, BY26, CA17 and CA18, contained mutations in an outer membran protein, OmpA, which may be involved in efflux.
he selenie sensitive mutant, CC42, contained a mutation
in a gene for a regulatory protein
. contained a mutation in gene for anthranilate synthase, Not all sequencing reation wan biosynthesis.

Summary of Mutants	
Mutant Types	Number
Arsenic and Selenite	6
Selenite	3
Arsenic	1
Copper, Selenite, and Minimal Medium	1
Minimal Medium	1

Future Work

Obtain sequence data for other mutants -Obtain the complete sequence for outer membrane protein -Use complementation experiments to show that the mutated gene can restore resistance

