Choose **Ohio** First

Department of Mathematical Sciences College of Art and Sciences

 \sim Coding Theory is the study of methods for efficient and accurate transfer of information from one place to another; finding noise and correcting errors \sim Code is a set of codewords. A block code is a set of codewords of the ∞ Codewords are the words belonging

- sends digits of 0 or 1.

- \sim Parity Digit is an added digit that
- code, error-correcting

 $\tau(x_0, x_1, \dots, x_{n-1}) = (x_{n-1}, x_0, x_1, \dots, x_{n-2})$

∞ A constacyclic code is a cyclic code where the circular shifts of each codeword gives another word that belongs to the code with the first symbol being a λ -tuple

 $\tau_{\lambda}(x_0, x_1, \dots, x_{n-1}) = (\lambda x_{n-1}, x_0, x_1, \dots, x_{n-2})$

 \sim A negacyclic code is a cyclic code where the circular shifts of each codeword gives another word that belongs to the code with the first symbol changing sign

Resources: http://www.usna.edu/Users/math/wdj/_files/documents/reed-sol.htm ; https://www.technologyreview.com/s/420369/code-quest/ ; Cyclic Codes & Reed Solomon Codes by John MacLaaren Walsh, ECES 421, Spring, 2013; Introduction to Coding Theory, Massoud Malek, California State University; http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.2977&rep=rep1&type=pdf; http://www.nasa.gov/mission_pages/LRO/news/mona-lisa.html; http://scienceandtechnology.jpl.nasa.gov/research/research-topics-list/communications: Performance and Impementation, Carol Condo, 2013; Performance Study of a Deep Space Communications system with LDPC under Solar Scintillation, Qi Li,2012; A Survey of Deep Space Comunication, Zhang Gengxin,2011; Coding Theory and Cryptography, The Essentials

Cyclic Codes in Algebraic Coding Theory

Jillian Gaietto, Senior, Pure Mathematics, Kent State University Advisor: Hai Q. Dinh, Ph.D., Professor of Mathematics, Kent State University

Definitions

to a given code; made up of digits \sim A channel is the physical medium through which the information is transmitted. A binary channel only

 \sim Noise is the undesirable disturbances which may cause information received to differ from that which was sent \sim Length is the number of digits in a

∞ A binary channel is symmetric if 0 and 1 are transmitted in equal accuracy. \sim The information rate is a number designed to measure the proportion of each codeword that is carrying the message - $\frac{1}{m}\log_2|C|$ code c of length n ∞ The Hamming weight is the number of times the digit 1 occurs in a codeword

∞ The Hamming distance is the number of positions in which w and v disagree,

follows a certain algorithm to reduce

 \sim A code C of distance d is an error correcting code if it detects all error patterns of weight less than or equal to (d-1) and there is at least one error pattern of weight d which C will not

 \sim A cyclic code is a block code where the circular shifts of each codeword gives another word that belongs to the

 $v(x_0, x_1, ..., x_{n-1}) = (-x_{n-1}, x_0, x_1, ..., x_{n-2})$

Compact Disc (CD)

- ∞ Reed-Solomon Codes with binary digits represented on the disc as pir and lands, first instituted in 1982
- ∞ Code is so strong most playback er comes from tracking errors causing the laser to jump tracks
- ∞ Reed-Solomon codes discovered i 1960 by Irving Reed and Gustave Solomon.
- ∞ Can detect and correct multiple errors, including burst errors.
- ∞ Can correct a burst error of up to 4000 bad bits, or a physical defect 2.47 mm long through parity digits and interleaving.
- ∞ Interpolation can conceal errors up to 13,700 bits of 8.5 mm long
- ∞ Two layers of Reed-Solomon code separated by a 28-way convolution interleaver, Cross-Interleaved Reed Solomon Code (CIRC)
 - ∞ High random error correctability
 - ∞ Long burst error correctability
 - ∞ In case exceeded, interpolation provide concealment approximation
 - ∞ Very high efficiency
 - ∞ Simple decoder strategy with reasonable sized memory
- \sim Codewords consist of all function tables of polynomials of degree les than k over the finite field with n elements (n is prime)
- ∞ Interpret k given symbols as the first segment of the function table. Remaining n-k symbols be generate by evaluating polynomial at points
- ∞ Since n transmitted symbols from ar overdetermined system that specifi polynomial of degree less than k, Interpolation can recover original message
- ∞ Adds a parity digits to every three
- ∞ 1st Circle: relatively weak Reed-Solomon (32,28), can correct up to bit errors in 32 bit block and flags erasures with more than 2 bit
- ∞ 2nd Circle: Reed-Solomon (28,24) co correct up to 4 erasures per block
- ∞ CIRC interleaves audio frames through disc over several consecu frame
- ∞ A physical frame contains information from many audio frames. This adds bits of error correction data to eac frame. 8 bits of subcode added to each frame

_)	Deep Space Communication
S	∞ Deep space communication is communication between earth stations
or	or space beyond Earth's gravitational field.
	 Most missions never return to earth, failed reception and
	consequent retransmission not an option ∞ Communication sporadic and
	ultra long distances ∞ Long delay, weak received signal, and variable distances according
of	 with orbits ∞ Asymmetrical uplink and downlink
	capacities ∞ Limited mass, power source, and volume
al	 Intensity of electromagnetic radiation decreases according to ¹
	r^{-2} as you leave Earth ∞ Channel coding major solution to deep
	space issues ∞ Traditionally used concatenation of convolutional code and Reed-Solomon
	codes. ∞ Convolutional code have greater
	simplicity of implementation over a block code of equal power ∞ Infinite but fundamentally don't offer more protection against noise
	 than the equivalent block code ∞ Encoder usually a simple circuit with memory and logic while decoder in software or firmware
	$c(x) = (c_1(x), c_2(x), \dots, c_n(x))$ = $(m(x)g_1(x), m(x)g_2(x), \dots, m(x)g_n(x))$
ed	∞ By adding specific types of redundancy, can recover data
€S	perfectly with high probability, even under huge amounts of noise ∞ Low-Density Parity-Check (LDPC) are
	on a matrix containing only a few ones in each row and column ∞ LDPC decoded on parity check matrix
2	which grows larger as the code rate is decreased, low rate LDPC more
	 Turbo codes are constructed by applying 2 or more simple to decode
n	encoding rules to different permutations of the same information sequence, achieve data rates more
ve	near Shannon limit (theoretical max) ∞ Turbo codes decoded on trellises with one trellis per information bit
on 64	corresponding to several code symbols ∞ LDPC now international standard while