Presented by: Raymond Gontkovsky and Julian Sobieski Faculty Advisor: Dr. Darci Kracht

Abstract

There exists specific scenarios in which two individual entities are evaluated and compared in two categories and one entity maintains a higher average in both given categories, while the other entity maintains a higher average overall; this occurrence is known as Simpson's Paradox. The discrepancy between the intuitive understanding of averaging averages and the correct method in adding averages leads to the paradoxical nature of Simpson's Paradox. With our project, we aspire to identify which conditions must be present for Simpson's Paradox to occur. First, we will explain an applied example of Simpson's Paradox. Second, we will define a model for Simpson's Paradox. From there, we will present our research in classifying interval restrictions which allow Simpson's Paradox to occur or prevent it from occurring entirely. Finally, we will present our research in further classifying Simpson's Paradox as a study of relationships and ratios.

Introduction and Real Example

Simpson's Paradox occurs in various statistical settings, including but not limited to sports. In basketball, we can compare two players on the basis of their two point, three point, and overall field goal percentages. If one player maintains a higher percentage in both two point and three point averages while the other player maintains a higher percentage in the average of combined field goals, Simpson's paradox is yielded. In the average of combined field goals, Simpson's paradox is yielded. In higher percentage in the individual categories, while Bedford maintained a higher percentage in combined field goals.
Kent State Men's Basketball: 2000-2001 Conference Games Only (18 games) ${ }^{1}$

	Trevor Huffman			Bryan Bedford		
	Made	Attempts	Average	Made	Attempts	Average
Two- pointers	57	127	$\mathbf{0 . 4 4 9}$	13	30	0.433
Three- pointers	35	100	$\mathbf{0 . 3 5 0}$	0	1	0.000
All field goals	92	227	0.405	13	31	$\mathbf{0 . 4 1 9}$

To depict Simpson's Paradox as a model, the data above can be represented by the notation of Table 1 found in Elementary Analysis.

Elementary Analysis		
Table 1:	Player $X_{(x, t)}$	Player $Y_{(y, s)}$
2 Points	$X_{2}=\frac{x_{2}}{t_{2}}$	$Y_{2}=\frac{y_{2}}{s_{2}}$
3 Points	$X_{3}=\frac{x_{3}}{t_{3}}$	$Y_{3}=\frac{y_{3}}{s_{3}}$
Totals	$R_{X}=\frac{x_{2}+x_{3}}{t_{2}+t_{3}}$	$R_{Y}=\frac{y_{2}+y_{3}}{s_{2}+s_{3}}$

Where $X_{2}, X_{3}, Y_{2}, Y_{3}, R_{X}, R_{Y}$ are percentages. Simpson's Paradox states that while $X_{2}>Y_{2}$ and $X_{3}>Y_{3}, R_{Y}$ is greater than R_{X}
Prove: $X_{3}<R_{X}<X_{2}$
Assume $X_{3}<X_{2}$:

Part 1:

$$
\begin{aligned}
\frac{x_{3}}{t_{3}} & <\frac{x_{2}}{t_{2}} \\
x_{3} t_{2} & <x_{2} t_{3}
\end{aligned}
$$

$$
x_{3} t_{2}+x_{3} t_{3}<x_{2} t_{3}+x_{3} t_{3}
$$

$X_{3}=\frac{x_{3}}{t_{3}}<\frac{x_{2}+x_{3}}{t_{2}+t_{3}}=R_{X} \rightarrow R_{X}>X_{3}$

$$
x_{3}\left(t_{2}+t_{3}\right)<t_{3}\left(x_{2}+x_{3}\right)
$$

Part 2:

$$
x_{3} t_{2}+x_{2} t_{2}<x_{2} t_{3}+x_{2} t_{2}
$$

$R_{X}=\frac{\left(x_{3}+x_{2}\right)}{\left(t_{2}+t_{3}\right)}<\frac{x_{2}}{t_{2}}=X_{2} \rightarrow R_{X}<X_{2}$
For $X_{3}<X_{2}$, as $R_{X}>X_{3}$ and $R_{X}<X_{2}, \boldsymbol{X}_{3}<\boldsymbol{R}_{X}<\boldsymbol{X}_{2}$ and player X's overall must be between anywhere between the averages of the two categories. Likewise, the same holds true for player Y on order of the same operation.

Case II

Given: $X_{2}>X_{3}, Y_{2}>Y_{3}, X_{2}>Y_{2}$, and $X_{3}>Y_{3}$
Prove: $Y_{2}>X_{3}$ can yield Simpson's Paradox as R_{Y} can be $>R_{X}$
Assume: $s_{3}=1, y_{3}=0$

$$
\text { For an } s_{2} \gg 1=s_{3}, \boldsymbol{R}_{\boldsymbol{Y}}=\frac{y_{2}+y_{3}}{s_{2}+s_{3}}=\frac{y_{2}}{s_{2}+1} \approx \frac{y_{2}}{s_{2}}=\boldsymbol{Y}_{\mathbf{2}}
$$

Assume: $t_{2}=1, x_{2}=1$

$$
\text { For a } t_{3} \gg 1=t_{2}, \boldsymbol{R}_{\boldsymbol{X}}=\frac{x_{2}+x_{3}}{t_{2}+t_{3}}=\frac{x_{3}+1}{t_{3}+1} \approx \frac{x_{3}+1}{t_{3}}
$$

$\rightarrow X_{3}+\frac{1}{t_{3}} ; \frac{1}{t_{3}}$ is negligible as $t_{3} \gg 1$, so $X_{3}+\frac{1}{t_{3}} \approx X_{3}$
The approximation is consistent considering $t_{2}, t_{3}, s_{2}, s_{3}$, are all non-zero and $R_{i} \neq i_{2,3}$, where $i \in\{X, Y\}$ As $\boldsymbol{R}_{\boldsymbol{Y}} \approx \boldsymbol{Y}_{\mathbf{2}}>\boldsymbol{X}_{\mathbf{3}} \approx \boldsymbol{R}_{\boldsymbol{X}}$, Simpson's Paradox is yielded.

Case I

Given Simpson's Paradox necessitates $X_{2}>Y_{2}$ and $X_{3}>Y_{3}$, and the situation assumes $X_{2}>X_{3}$ and $Y_{2}>Y_{3}$, prove X and Y 's intervals do not overlap and Simpson's Paradox cannot occur for $X_{3}>Y_{2}$.

Proof: Each subject's overall average ranges between two possible averages, as is evident in Elementary Analysis proof.

When calculating R_{X} and R_{Y} which are the average scores for X and Y we use the formulas:
$R_{X}=\frac{x_{2}+x_{3}}{t_{2}+t_{3}}$ and $R_{Y}=\frac{y_{2}+y_{3}}{s_{2}+s_{3}}$, where t and s denote the number of total attempts for their respective categories and x and y denote the number of success in each respective category.
The minimum for $R_{X} \approx X_{3}$ and the maximum value for $R_{Y} \approx Y_{2}$ as $X_{3}<R_{X}<X_{2}$ and $Y_{3}<R_{Y}<Y_{2}$. While $R_{x}>X_{3}, R_{y}<Y_{2}$, and $X_{3}>Y_{2}$ there cannot be overlap between the intervals of possible averages for $R_{X} \& R_{Y}$ as $R_{X}>X_{3}>Y_{2}>R_{Y}$. No matter how weighted the categories are, $\boldsymbol{R}_{\boldsymbol{X}}>\boldsymbol{R}_{\boldsymbol{Y}}$.

variables. Analysis of Simpson's
Paradox as a continuous condition
is the next step in applying Simpson's Paradox to new models.

Contact

<Raymond Gontkovsky and Julian Sobieski> <Kent State University; Choose Ohio First> Email: rgontkov@ kent.edu, isobiesk@kent.edu
Phone: 330-235-3882, 330-861-2059

References

