Prime Numbers in Cryptology

Leon Bykov, Lisa Stelmarski, Daniel Arraj Advisor: Dr. Luiz Felipe Martins

History

- One of the first encryption systems was the Caesar cipher.
-Example: shift each letter to the right by three spaces, so $A \rightarrow D$ - Used for hundreds of years until it was discovered how to break the code by using frequency analysis.
- Most famous encryption system was the Enigma machine.
- Used in WWII by the Nazis to encrypt codes; seemed impossible to break and had a code that was changed often.

The Enigma

Modern Encryption

-Asymmetrical processes

- Very dependent on primes and their behavior.
\bullet Primes defy simple attempts at cracking. (How does a hacker find the "key"?)

Primes in Action: Key Exchange

-Alice and Bob pick a prime psay, 13-and a primitive root mod p, r-say, 2. (A primitive root's powers modulo p give all values from 1 to $p-1$.)
-Alice picks a secret integer-say, 4 -and computes $2^{4} \bmod 13$ (3). Bob picks a secret integer-say, 5 —and computes $2^{5} \bmod 17$ (6). They exchange 3 and 6. -Alice computes $6^{4} \bmod 13$ and Bob computes $3^{5} \bmod 13-b o t h 9$. -Alice and Bob got the same key without actually revealing it! -Although not an encryption method per se, this does answer another question: how do we decide on keys without revealing them to eavesdroppers?

Why primes?

- Modular arithmetic modulo a prime is a field. Notably, if you multiply two nonzero numbers modulo a prime, you cannot get zero. This prevents data loss. -Composites usually lack primitive roots.
-However, factoring products of two primes (which are also used) is very time-consuming.

Prime Factorization

-The RSA cryptosystem also uses products of two primes.

- Breaking RSA involves factoring this number, a very long process! -Assuming a million operations per second, it would take a computer 4.9×10^{15} years to check all possible prime factors! \bullet Factorization is often used as a benchmark for computer performance.

Conclusion

-Cryptosystems have become ever more complicated, from Caesar shift to Enigma to publickey cryptography.
-Earlier ciphers were symmetric and had no "deep" mathematics. Today, ciphers depend on and special numbers and functions. -This has led to greater interest in these numbers and functions. For example:
-Can we easily factor large numbers?

- Are there general patterns in primes?
-Can we develop a quick test for primality that does not depend on factorization?

