

Introduction

- Three common (and easy to implement) sorting algorithms are: Quick Sort, Bubble Sort, and Selection Sort.
- Average time complexities:
 - Quick Sort: O(*n* log *n*)
 - Bubble Sort: $O(n^2)$
 - Selection Sort: $O(n^2)$
- Big-O notation: Upper bound growth rate of a function.
- Quick Sort: Divide-and-conquer; recursively sort left and right sublists.
- Bubble Sort: Compares adjacent values and swaps them if necessary.
- Selection Sort: Divides list into two sublists: sorted and unsorted. Smallest value of the unsorted sublist is added to the end of the sorted sublist.

2.

Methods

- Each algorithm sorts identical, randomly created arrays.
- The size of the array to be sorted is increased exponentially.

• Sizes tested: 10; 100; 1,000

- Each size of array is tested 10,000 times and the quickest algorithm is recorded.
- The average time is also recorded.
- Run on a Dell Inspiron 15R

Common Sorting Algorithms Michael Hinton, Cleveland State University

Jacob Katzenmeyer, Cleveland State University

3.

Average times:

Quickest 954 times • Bubble Sort: 1.608 ms Quickest 905 times **Selection Sort: 1.260 ms** \bigcirc Quickest 6653 times

• Quick Sort: 1.591 ms

Average times:

• Quick Sort: 17.946 ms Quickest 9973 times • Bubble Sort: 75.054 ms Quickest 1 time • Selection Sort: 37.081 ms Quickest 26 times

Average times: • Quick Sort: 230.256 ms Quickest 9997 times • Bubble Sort: 4711.951 ms Quickest 0 times • Selection Sort: 1879.145 ms Quickest 3 times

Conclusion 4.

- with larger data sizes.
- size (10).

Acknowledgments: Thanks to Choose Ohio First and Cleveland State University for the opportunity to conduct this research.

Results

10 Item Array

100 Item Array

1,000 Item Array

 Quick Sort was the fastest algorithm • However, it was not the quickest algorithm at sorting a small data

 As expected (from their accepted) time complexities), all algorithms are more than 10 times slower as the data size is increased 10 times.