
The Euclidean algorithm, also known as Euclid’s algorithm, is an
algorithm for finding the greatest common divisor (GCD) between
two numbers. The GCD is the largest number that divides two
numbers without a remainder. The GCD of two numbers can be
found by making a list of factors for the two numbers, and finding
the largest factor that is in both sets. This works well for small
numbers, but it can become quite tedious and time consuming
for larger numbers. To address this problem, Euclid’s algorithm
can be used, which allows for the GCD of large numbers to be
found much faster. Euclid’s algorithm uses the principle that the
GCD of a set of two numbers does not change if you replace the
larger of the two with the remainder when you divide the larger of
the two by the smaller.

The algorithm takes two numbers and finds the GCD between
them. It does this in a recursive fashion by replacing the larger of
the 2 numbers with the remainder of dividing those two numbers.
This continues until the remainder is found to be 0. This process
is visually demonstrated in figure 1 below.

Before we can prove Euclid’s algorithm, we must prove that
GCD(a, b) = GCD(a, r). Where a and b are integers, and q and r
are integers such that b = q × a + r.
We know that:

GCD(a, b) | a and GCD(a, b) | b
From the Division Theorem we know:

GCD(a, b) | (1 × b – q × a) and r = (b – q × a)
We can then replace the right side with r:

GCD(a, b) | r
From here we can start on the other side of that coin:

GCD(r, a) | r and GCD(r, a) | a
Using the Division Theorem again:

GCD(r, a) | (1 × r + q × a) and b = q × a + r
We can then replace the right side with a:

GCD(r, a) | b
This shows that a and b, and b and r have the same set of
common divisors. Since the set of divisors is the same it follows
that the GCD’s are the same.

GCD(a, b) = GCD(r, a)
This proof is the basis for Euclid’s algorithm. We can continually
replace the larger of the pair with the remainder of the division of
the two. This is demonstrated again in figure 2.

Figure 1 demonstrates Euclid’s algorithm. The first row shows the
equation used to find the GCD.

Sudeshna Chakraborty, Mark Heller, Alex Phipps.
Faculty Advisor: Dr. Ivan Soprunov, Department of Mathematics, Cleveland State University

Runtime is an important characteristic of any algorithm. The
Euclidean algorithm has an upper bound on the number of steps
it will take to find the GCD. This bound is found by the equation:

k ≤ log2(a) + log2(b)
where k is the number of steps. This inequality can be easily
proven, if we assume a and b are positive integers and (a < b),
we can replace b with r as proven earlier so the inequality
changes to (a > r). Since a is smaller then b and r is smaller
then a, we can conclude that:

(2 × r < a + r ≤ b)
We then come to the conclusion that:

(a × r) < (.5 × a × b)
With every step of Euclid’s algorithm the product of the current a
and b goes down by a factor of 2. So:

a × b ≥ 2k
Cleaning this up we get back to where we started:

k ≤ log2(a) + log2(b)
This gives a fairly decent estimate on the upper bound of steps
that it could take to perform the algorithm, but with the inequality
it will only be a rough estimate.

The best case scenario for this algorithm would be the fastest it
could possibly find the GCD. The fastest possible would be in
one or two steps. This can happen in two different scenarios.
The first being either a or b is 0. If a or b is zero the algorithm
will end and return the other value to you as the GCD. The other
scenario is it being two steps with non zero values for a and b.
There are several easy scenarios for this such as relatively small
numbers, but what about very large numbers? The Euclidean
algorithm can end in one step even if the numbers themselves
are arbitrarily large. For example we could choose the pair
below:

GCD(2,000,000 , 2,000,001)
Running through the algorithm:

1: 2,000,001 = 1 × 2,000,000 + 1;
2: 2,000,000 = 2,000,000 × 1 + 0;
1 is the GCD of 2,000,000 and 2,000,001.

This example shows that the size of the numbers is not as
important as the distance between them.

b = (b / a) * a + (b % a)
148 = 5 * 26 + 18
26 = 1 * 18 + 8
18 = 2 * 8 + 2
8 = 4 * 2 + 0

1 GCD(a, b) b ≥ a > 0
2 b = q1 × a + r1 a > r1 ≥ 0
3 a = q2 × r1 + r2 r1 > r2 ≥ 0
4 r1 = q3 × r2 + r3 r2 > r3 ≥ 0

…
n rn - 1 = qn + 1 × rn + 0

Figure 2: Illustration of proof, the number in the red circle will be
the GCD.

Euclid’s Algorithm

Introduction

Procedure

Proof

Proof continued
Earlier we determined that the distance between the numbers
was an important factor in determining the runtime, so this leads
to the question what is the worst possible distance? Consecutive
Fibonacci numbers give the worst possible run time. Fibonacci
numbers are recursive in nature adding the two previous
numbers to get the next number. This leads to each q value (the
same q value shown in figure 2) being 1 and the remainder when
they are divided being the previous Fibonacci number. The
example below demonstrates this on two small Fibonacci
numbers 8 and 5:

1: 8 = 1 × 5 + 3;
2: 5 = 1 × 3 + 2;
3: 3 = 1 × 2 + 1;
4: 2 = 1 × 1 + 1;
5: 1 = 1 × 1 + 0;
1 is the GCD of 8 and 5.

Even though the numbers are small it took 5 steps to find the
GCD using the algorithm. The algorithm goes through all the
Fibonacci numbers until it reaches 0.

Using java we generated 200 random number pairs between 0
and 2,147,483,647 (the maximum integer value in Java) and
found the GCD between them. We tracked the number of steps
it took to find the GCD and plotted them in a histogram. The data
make a bell curve around an average of 18 steps, shown below.
The program used the built in java method Random which can
generate random int numbers between a given upper bound and
0. Even for randomly generated arbitrarily large numbers the
algorithm can finish reasonably quickly.

The Euclidean algorithm is a very fast way of finding the GCD of
two numbers no matter how large those numbers are. With good
estimates for the maximum number of steps and known worst
case scenarios, the algorithm is efficient and predictable.

Lovász, L., Pelikán, J., & Vesztergombi, K. (2003). Discrete
mathematics elementary and beyond (pp. 99-104). New York:
Springer.

Special thanks to Dr. Soprunov for his guidance and support
throughout this project, and a special thanks to the COF and
NSF programs for the funding.

Acknowledgments

Runtime

Best case

References

Conclusion

Worst Case

Experiment

0
10
20
30
40
50

10 11 13 14 15 17 18 20 21 22 24 25 26 28
Figure 3:Histogram of the frequency (y-axis) and the number of
steps to complete the algorithm (a-axis) on randomly generated
pairs in Java.

