L'Hospital's Rule Can be Used to Evaluate $\lim _{x \rightarrow 0} \frac{\sin x}{x}$
Choose

Anita Mizer

Dr. Jeffrey Osikiewicz

L'HOSPITAL'S RULE
Suppose f and g are differentiable on (a, b) and $g^{\prime}(x) \neq 0$ for $a<x<b$. If $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)=0$ and $\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, then $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$.

Abstract
The standard proof presented in calculus courses concludes that $\frac{d}{d x} \sin x=\cos x$ using
the limit $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$. A natural question then becomes can you logically use L'Hospital's
Rule on this limit? The objective of this project is to name another method to find $\frac{d}{d x} \sin x$
without using the limit $\lim _{x \rightarrow 0}^{\sin x} x$. Once this proof is established, L'Hospital's Rule can then
be used on this limit without any logical uncertainties.

1. The Limit
$\lim _{\theta \rightarrow 0^{+}} \frac{\sin \theta}{\theta}=1$.

Solution

Figure 1
Using Figure 1, we obtain the following equations, which are valid for $0<\theta<\pi / 2$: area of triangle $O A C=\frac{1}{2}$. base \cdot height $=\frac{1}{2} \cdot 1 \cdot \sin \theta=\frac{\sin \theta}{2}$ area of sector $O A C=\frac{1}{2} \cdot$ angle $\cdot(\text { radius })^{2}=\frac{1}{2} \cdot \theta \cdot 1^{2}=\frac{\theta}{2}$ area of triangle $O A B=\frac{1}{2}|O A||A B|=\frac{1}{2} \cdot 1 \cdot \tan \theta=\frac{1}{2} \cdot \frac{\sin \theta}{\cos \theta}$.
It is geometrically clear that
area of triangle $O A C \leq$ area of sector $O A C \leq$ area of triangle $O A B$
so that

$$
\frac{\sin \theta}{2} \leq \frac{\theta}{2} \leq \frac{1}{2} \cdot \frac{\sin \theta}{\cos \theta}, \quad \text { for } 0<\theta<\frac{\pi}{2} .
$$

If we multiply this inequality by $\frac{2}{\sin \theta}$ and examine the reciprocal of this inequality we obtain

$$
\cos \theta \leq \frac{\sin \theta}{\theta} \leq 1, \quad \text { for } 0<\theta<\frac{\pi}{2}
$$

Since $\lim _{\theta \rightarrow 0^{+}} \cos \theta=1=\lim _{\theta \rightarrow 0^{+}} 1$, it follows from the Squeezing Theorem that

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0^{+}} \frac{\sin \theta}{\theta}=1 . \\
& \lim _{\theta \rightarrow 0^{-}} \frac{\sin \theta}{\theta}=1 . \\
& \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 .
\end{aligned}
$$

Since $\frac{\sin \theta}{\theta}$ is an even function,
2. Evaluating The Derivative With the Limit

2. E
Show that $\frac{d}{d x} \sin x=\cos x$

Solution.
By definition,

$$
\frac{d}{d x} \sin x=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h}
$$

$=\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h}$
$=\lim _{h \rightarrow 0} \frac{\cos x \sin h-\sin x+\sin x \cos h}{h}$
$=\lim _{h \rightarrow 0} \frac{\cos x \sin h-\sin x(1-\cos h)}{h}$
$=\lim _{h \rightarrow 0} \frac{\cos x \sin h}{h}-\lim _{h \rightarrow 0} \frac{\sin x(1-\cos h)}{h}$
$=\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h}-\sin x \lim _{h \rightarrow 0} \frac{1-\cos h}{h}$
$=\cos x(1)-\sin x\left[\lim _{h \rightarrow 0}\left(\frac{1-\cos h}{h}\right)\left(\frac{1+\cos h}{1+\cos h}\right)\right]$
$=\cos x-\sin x\left[\lim _{h \rightarrow 0} \frac{1-\cos ^{2} h}{h(1+\cos h)}\right]$
$=\cos x-\sin x\left[\lim _{h \rightarrow 0} \frac{\sin ^{2} h}{h(1+\cos h)}\right]$
$=\cos x$.

Show that $\frac{d}{d x} \sin x=\cos x$
Solution.

Let $A C B$ in Figure 2 be the first quadrant of the unit circle. The area of $O A C D$ is given by

$$
\int_{0}^{x} \sqrt{1-x^{2}} d x, \quad 0<x<1
$$

This is equivalent to the area of triangle $O C D$ plus area of the sector $O A C$. So,

$$
\begin{aligned}
\int_{0}^{x} \sqrt{1-x^{2}} d x & =\frac{1}{2} x \sqrt{1-x^{2}}+\frac{1}{2} \arcsin x \\
\frac{d}{d x}\left(\int_{0}^{x} \sqrt{1-x^{2}} d x\right) & =\frac{d}{d x}\left(\frac{1}{2} x \sqrt{1-x^{2}}\right)+\frac{1}{2} \frac{d}{\operatorname{arc}} \arcsin x \\
\sqrt{1-x^{2}} & =\frac{1}{2} \sqrt{1-x^{2}}+\left(\frac{1}{2} x\right)\left[\frac{1}{2}\left(\frac{-2 x}{\sqrt{1-x^{2}}}\right)\right]+\frac{1}{2} \frac{d}{d x} \arcsin x \\
\sqrt{1-x^{2}} & =\frac{1}{2} \sqrt{1-x^{2}}-\frac{x^{2}}{2 \sqrt{1-x^{2}}}+\frac{1}{2} \frac{d}{d x} \arcsin x \\
\frac{d}{d x} \arcsin x & =2\left(\sqrt{1-x^{2}}-\frac{1}{2} \sqrt{1-x^{2}}+\frac{x^{2}}{2 \sqrt{1-x^{2}}}\right) \\
\frac{d}{d x} \arcsin x & =\sqrt{1-x^{2}}+\frac{x^{2}}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \arcsin x & =\frac{1-x^{2}+x^{2}}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \arcsin x & =\frac{1}{\sqrt{1-x^{2}}}, \quad \text { for } 0<x<1 .
\end{aligned}
$$

Now we can find the derivative of $\sin x$ by observing that $\sin x$ is the inverse of arcsin x. So if $\sin x=y\left(0<x<\frac{\pi}{2}, 0<y<1\right)$, then $\arcsin y=z$ and, by the Inverse Function Theorem,
$=\cos x-\sin x\left[\lim _{h \rightarrow 0} \frac{\sin h}{h} \cdot \lim _{h \rightarrow 0} \frac{\sin h}{1+\cos h}\right]$
$=\cos x-\sin x\left[(1)\left(\frac{0}{1+1}\right)\right]$

$$
\begin{aligned}
\frac{d}{d x} \sin x & =\frac{1}{\frac{d}{d y} \arcsin y} \\
& =\frac{1}{\frac{1}{\sqrt{1-y^{2}}}} \\
& =\sqrt{1-y^{2}} \\
& =\sqrt{1-\sin ^{2} x} \\
& =\sqrt{\cos ^{2} x} \\
& =\cos x \quad \text { for } 0<y<\frac{\pi}{2} .
\end{aligned}
$$

Therefore, $\frac{d}{d x} \sin x=\cos x$.(Spiegel, 1956)
We can now evaluate $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}$ using l'Hospital's Rule without any uncertainties:

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \stackrel{\text { 나 }}{=} \lim _{x \rightarrow 0^{+}} \frac{\cos x}{1}=1 \text {. }
$$

4. References
M.R. Spiegel, On the Derivative of Trigonometric Functions, American Mathematica
Monthly, 63 (1956), 118-120.

Figure 2

