

YOUNGSTOWN STATE UNIVERSITY

TOWARDS MINING EYE-TRACKING DATASETS FOR EXPERTISE PREDICTION Choose **Chio** First JENNA WISE Advisors: Dr. Bonita Sharif, CSIS Dept. and Dr. David Pollack, Math & Stats Dept.

ABSTRACT

What	We explore the feasibility of using eye gaze data to quantify the expertise of software developers during bug fixing tasks.
How	Several sequential analysis techniques were used from TraMineR to analyze developer expertise.
Results	Can quantify the expertise of software developers during bug fixing tasks that require changing multiple source code elements for a solution.

DATA

- **Data Collection Goal:** To investigate the detailed navigation behavior of developers for realistic change tasks. [1]
- 12 professional developers at **Participants:** ABB Inc. and 10 computing students at Youngstown State University.
- Tasks: Find and fix three bugs in the JabRef repository based on real-world bug reports.
- Data Collection Tool: iTrace, an Eclipse plugin, works with an eye-tracker to capture eye gaze fixation data on source code elements.
- Sequence Format: A fixation contains many data fields, but we only use **fully qualified** name and duration to generate sequences in states-sequence format (STS).

A sample of our data in STS format is in Figure 1.

Id	STS Sequence						
24	358	358	358	358	358	359	
7	1	1	1	1	1	1	

Figure 1: Participants 24 & 7's first 6 source code elements in STS format for Task 1

CONCLUSIONS

- The more a bug requires fixing code across multiple methods, classes, and files (Task 1) the more distinct expert and novice eye gaze sequences are.
- Results were mixed for Tasks 2 and 3 without clear distinctions between experts and novices. Entropy and turbulence patterns found in Task 1 were contradicted in these tasks.
- Out of the three similarity metrics we used, Longest Common Subsequence and Optimal Matching clustered well for Task 1 and Longest Common Prefix clustered poorly over all tasks due to its dependence on the longest common prefix of two sequences.

FUTURE WORK

• Analyze sequences of visited source code lines per participant for the most viewed methods in each task.

• Use other sequential analysis techniques to explore the subsequences of source code elements that define the similarity metric clusters.

• Perform further statistical tests on entropy and turbulence values.

CONTACT INFORMATION Jenna Wise Name jlwise@student.ysu.edu Email Bonita Sharif Name bsharif@ysu.edu Email David Pollack Name dhpollack@ysu.edu Email

REFERENCES

[1] Katja Kevic, Braden M Walters, Timothy R Shaffer, Bonita Sharif, David C Shepherd, and Thomas Fritz. Tracing software developers' eyes and interactions for change tasks. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages 202–213. ACM, 2015.

[2] Alexis Gabadinho, Gilbert Ritschard, Matthias Studer, and Nicalas S Müller. Mining sequence data in r with the traminer package: A users guide for version 1.2. *Geneva: University of Geneva*, 2009.

Figure 4: Task 1 LCS metric *k*-means 2 cluster

Component These two components explain 37.68 % of the point variability

Figure 7: Task 2 LCS metric *k*-means 2 cluster