
TOWARDS MINING EYE-TRACKING DATASETS FOR EXPERTISE PREDICTION
JENNA WISE

ADVISORS: DR. BONITA SHARIF, CSIS DEPT. AND DR. DAVID POLLACK, MATH & STATS DEPT.

ABSTRACT

What

We explore the feasibility of using eye
gaze data to quantify the expertise of
software developers during bug fixing
tasks.

How
Several sequential analysis techniques
were used from TraMineR to analyze
developer expertise.

Results

Can quantify the expertise of software
developers during bug fixing tasks that
require changing multiple source code
elements for a solution.

DATA
Data Collection Goal: To investigate the detailed

navigation behavior of developers for real-
istic change tasks. [1]

Participants: 12 professional developers at
ABB Inc. and 10 computing students at
Youngstown State University.

Tasks: Find and fix three bugs in the JabRef repos-
itory based on real-world bug reports.

Data Collection Tool: iTrace, an Eclipse plugin,
works with an eye-tracker to capture eye
gaze fixation data on source code elements.

Sequence Format: A fixation contains many
data fields, but we only use fully qualified
name and duration to generate sequences
in states-sequence format (STS).

A sample of our data in STS format is in Figure 1.

Id STS Sequence

24 358 358 358 358 358 359

7 1 1 1 1 1 1

Figure 1: Participants 24 & 7’s first 6 source code ele-
ments in STS format for Task 1

RESULTS

expert novice

0.
1

0.
2

0.
3

0.
4

0.
5

Expertise

E
n

tr
o

p
y

Figure 2: Task 1 entropy

expert novice

0
20

0
40

0
60

0
80

0

Expertise

Tu
rb

u
le

n
ce

Figure 3: Task 1 turbulence

−4 −2 0 2 4

−
3

−
1

0
1

2
3

Component 1

C
om

po
ne

nt
 2

These two components explain 34.71 % of the point variability.

1

2

3

4
56

7

8

9

10

11

12
1314

15

16
17

18

19 20
21

1

2

−
−

expert
novice

Figure 4: Task 1 LCS metric k-means
2 cluster

expert novice

0.
1

0.
2

0.
3

0.
4

0.
5

Expertise

E
n

tr
o

p
y

Figure 5: Task 2 entropy

expert novice

0
20

0
40

0
60

0

Expertise

Tu
rb

u
le

n
ce

Figure 6: Task 2 turbulence

−4 −2 0 2 4

−
4

−
2

0
2

Component 1

C
om

po
ne

nt
 2

These two components explain 37.68 % of the point variability.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2112
−
−

expert
novice

Figure 7: Task 2 LCS metric k-means
2 cluster

EXPERIMENT

STS Format

Label Data

TraMineR [2]

Data

Entropy Turbulence

Similarity

CONCLUSIONS
• The more a bug requires fixing code across

multiple methods, classes, and files (Task 1)
the more distinct expert and novice eye gaze
sequences are.

• Results were mixed for Tasks 2 and 3 with-
out clear distinctions between experts and
novices. Entropy and turbulence patterns
found in Task 1 were contradicted in these
tasks.

• Out of the three similarity metrics we used,
Longest Common Subsequence and Opti-
mal Matching clustered well for Task 1 and
Longest Common Prefix clustered poorly
over all tasks due to its dependence on the
longest common prefix of two sequences.

FUTURE WORK
• Analyze sequences of visited source code

lines per participant for the most viewed
methods in each task.

• Use other sequential analysis techniques to
explore the subsequences of source code
elements that define the similarity metric
clusters.

• Perform further statistical tests on entropy
and turbulence values.

REFERENCES

[1] Katja Kevic, Braden M Walters, Timothy R Shaffer, Bonita Sharif, David C Shepherd, and Thomas Fritz. Tracing
software developers’ eyes and interactions for change tasks. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 202–213. ACM, 2015.

[2] Alexis Gabadinho, Gilbert Ritschard, Matthias Studer, and Nicalas S Müller. Mining sequence data in r with the
traminer package: A users guide for version 1.2. Geneva: University of Geneva, 2009.

CONTACT INFORMATION
Name Jenna Wise
Email jlwise@student.ysu.edu

Name Bonita Sharif
Email bsharif@ysu.edu

Name David Pollack
Email dhpollack@ysu.edu


