Ballistics Model for an Autoloading Device

Purpose of Experiment

The purpose of the experiment was to develop a math model for predicting the pressure inside the gas tube of an autoloading device. device without causing damage is essential, and could save engineer precious time and resources.
With too much pressure, the impact between the recoil piston and he firing hammer would be too great and would fatigue and damage eload, and the device would malfure, the hammer would not fully

With an equation known to relate the two pressures, the limiting actor of the pressure inside the gas tube would be the diameter of seen in figure 1, choked flow occurs when a fluid is pressurized to the point where it's mass flow through a port can no longer increase.

Background

Initially when a rifle is fired, the pressure inside the barrel can reach 16,000 psi. This is an outstanding pressure that still puzzles experts today.

The image below, Figure 2, is of an AR-15 in action. When the rifle is fired, the gases created from the powder burning are recycled hrough a gas port and through a gas tube where they push a small piston that resets the firing proces.

Forming an Equation

Before deciding on equations assumptions were made

1. Barrel gas obeys Nobel-Abel gas law
2. Ratio of specific heats of barrel gases is constant. (Calorically perfect) mperature of the barrel gases is constant.
Gas in the gas tube behaves as an ideal
3. The gas flow through the gas tube is an isentropic process.
4. The flow of the gas is 1-D and compressible (no viscosity).

Next, relevant equations were selected:

Temperature of Gas:	$T=T_{0} *\left(\frac{P_{0}}{P}\right)^{(1-k / k)}$	(Eqn. 1)
Subsonic Velocity:	$v=\sqrt{2 * c_{p} *\left(T_{0}-T\right)}$	(Eqn. 2)
Subsonic Mass Flow:	$\dot{m}=\rho_{0} * v * A$	(Eqn. 3)
Choked Mass Flow:	$\dot{m}=\rho_{0} * c * A$	(Eqn. 4)
Speed of Sound:	$c_{0}=\frac{\sqrt{k * R * T_{0}}}{1-b * \rho_{0}}$	(Eqn. 5)
Ideal Gas Density:	$\rho=\frac{P}{R * T}$	(Eqn. 6)
Nobel-Abel Eqn. of State:	$\rho_{0}=\frac{P_{0}}{R * T_{0}+P_{0} * b}$	(Eqn. 7)
Gas Tube Pressure:	$P=P_{0}\left[1+\frac{(K-1) M a^{2}}{2\left(1-b * \rho^{*}\right)^{2}}\right]^{-k / k-1}$	(Eqn. 8)

Defining the Variables

To make an analysis of this work simpler for the view, the variables used in the equations are defined as the following

$P_{0}(t): \quad$ Absolute barrel pressure.

$\rho_{0}(t)$: Barrel gas density.
T_{0} : Absolute gas temperature in barrel (constant).
k_{0} : Specific heat ratio of gas in barrel(constant).
b_{0} : \quad Volume of gas in barrel.
Gas constant for combustion ga
$\dot{m}(t): \quad$ Mass flow rate though gas port
s.
c_{0} : Speed of sound for combustion gas in barrel \& gas port.
$\rho(t): \quad$ Gas denisty in gas tube
$\begin{array}{ll}T(t): & \text { Absolute has temperature in gas tube } \\ P(t): & \text { Absolute gas pressure in }\end{array}$
W: Volume of side chamber
t_{i} : \quad Time after $i^{\text {th }}$ time step $(1 \leq i \leq 100)$

Gathering the Data

Data collected for this experiment was taken from taken from a test firing of a semi-automatic rifle. Professor Brian Vuksanovich attached a pressure over the 3 millisecond window of firing. For a better idea of how the sensor ork, figure 3 shows a section view of a sample apparatus
It can be seen how dangerous it would to be place the sensor in front of the bullet - The bullet could deform the sensor or vice versa

Next, it was time to plot the data. The computer software Matlab was used to solve equations 1-8 and plot. Solving equations $1-7$ first, versus time a result was found.

Figure 3: Barrel Pressure Sensor

Results \& Conclusion

Both the barrel pressure and the gas tube pressure were plotted against each ther as seen in Figure 4. It can be noted that the barrel pressure is much higher than the gas tube pressure, but the gas tube pressure follows a simila ontour.

Figure 4: Plotted Results
Concluding, the results were satisfactory. The gas tube pressure follows the ontour that was expected and the values fall within an acceptable range uture tests could increase accuracy by using less restrictive assumption re verified, they may be used to calculate the critical diameter of the gas port, or the critical stiffness of the spring used on the recoiling piston

