

Abstract

Our research group outlined a rainwater management plan for a section of the Youngstown State University campus under the guidelines of the Environmental Protection Agency's Campus Rainworks Challenge. Overland flow calculations were performed to evaluate the site in its current state and the site after it would be remodeled to improve rainwater flow. Environmental sustainability was kept in mind, through incorporating permeable pavement, rain gardens, and bioswales. The final priority of the project was to make the area more appealing to the campus community

Purpose

- To reduce the environmental impact that the campus has on the local environment.
- To improve the aesthetics of campus to make a more appealing student environment.
- To gain a better understanding of stormwater runoff and how to effectively manage it.

Introduction

The EPA Campus Rainworks Challenge has teams from universities across the United States compete in two separate competitions which involve planning and designing ways to improve the handling of rainwater throughout the team's campus. The focus of the study site for our research is located on the west side of the campus. In the area, we currently have two open large acreage parking lots, a large amount of green space in front of the campus recreational facility, and a large courtyard in the middle of campus. Our plan, if put into action, would improve rainwater management on campus, as well as create a greener campus scape at Youngstown State University.

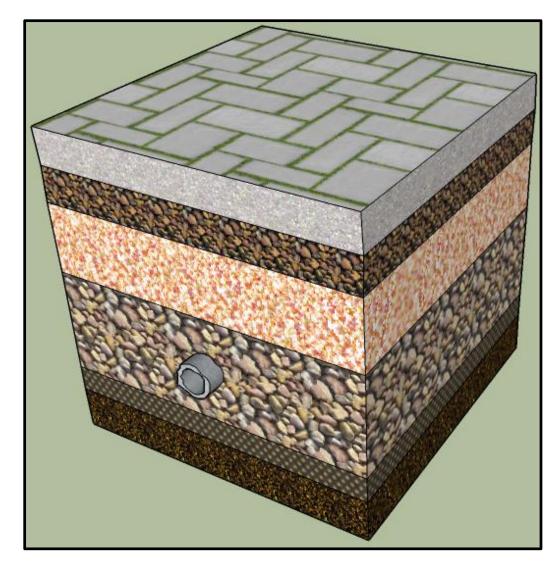
YOUNGSTOWN STATE UNIVERSITY

Youngstown State Environmental Protection Agency Rainworks Challenge **Flow Calculations**

Students: Joseph Agati, Daniel Bancroft, Austin Snovak, and Blake Walker Advisors: Professor Joseph Sanson, Professor Robert Korenic, and Dr. Colleen McLean Project Area Outline

Area 1

- Permeable pavement on parking lots •
- Bioswales along parking lots
- Rain gardens along edge of area


Area 2

- Rain garden on the downslope of area
- Student seating area
- Bus stop with green roof and wall

Proposed Project Area

Permeable Paver Parking Lot

Bioswale

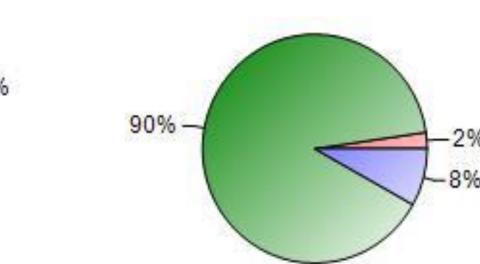
69%- Runoff Infil.	Evap. Runoff	Infil. Evap.
Statistic	Current Scenario	Baseline Scenario
Average Annual Rainfall	40.9 in.	39.79 in.
Average Annual Runoff	3.31 in.	27.52 in.
Days per Year With Rainfall	87.04	87.49
Days per Year with Runoff	6.60	65.90
Percent of Wet Days Retained	92.42	24.67
Smallest Rainfall w/ Runoff	1.04 in.	0.1 in.
Largest Rainfall w/o Runoff	1.1 in.	0.23 in.
Max. Rainfall Retained	3.62 in.	0.62 in.

"Campus Rainworks Challenge." United States Environmental Protection Agency, n.p., 2016, https://www.epa.gov/green-infrastructure/campus-rainworks-challenge-0. Accessed 23 November 2016.

Neal, Catherine. "Native Plant Selection for Biofilters and Rain Gardens." *Ecological Landscape* Alliance, Ecological landscape Alliance, 2016, http://www.ecolandscaping.org/12/uncategorized/native-plant-selection-biofilters-rain -gardens/

Accessed 23 November 2016. Acknowledgements: Jeff Smith of MS Consultants for assistance with civil design; Alicia Libert of YSU for assistance with project outline and basic research

Baseline Scenario Annual Rainfall = 39.79 inches



Area 3

- Rain gardens in select center circles
- Bioswale-connected sprinkler system Bicycle racks near student areas

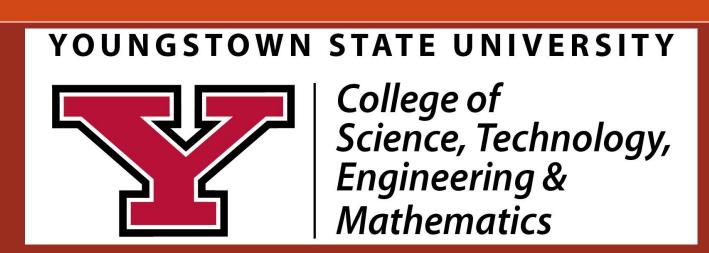
Rainfall Management

Current Scenario Annual Rainfall = 40.90 inches

Select Sources

C Values			C1post					
	Area	%Area	C _{pre}	C _{post}	Туре	Area	%Area	С
A1	5.55	0.247989	0.95	0.585135	Permeabl	4.65	83.7838	0.65
A2	2.83	0.126452	0.95	0.603357	e			
A3	14.00	0.625559	0.46	0.46	Park	0.9	16.2162	0.25
A total	22.38	1	0.643476	0.50916	Total	5.55		0.5851351
	Q values I Values							
Year	Q _{pre}	Q _{post}	Year Storm	Ι		C2]	post	
10	68.83678	54.4681		1	Туре	Area	%Area	C
25	78.19743	61.87485	10	4.78	Permeable	2.5	88.3392	~0.65
23	/0.19/43	01.0/403	25	5.43	Doult	0.22	11 6609	0.25
50	85.25392	67.4584	50	5.92	Park	0.33	11.6608	0.25
100	92.1664	72.928	100	6.4	Total	2.83		0.603357
Equations			C3post					
$C_{pre} = (Area1_{\%} * C_{pre}1) + (Area2_{\%} * C_{pre}2) + (Area3_{\%} * C_{pre}3)$				Туре	Area	% Area	C	
$C_{\text{post}} = (\text{Area1}_{\%} * C_{\text{post}}1) + (\text{Area2}_{\%} * C_{\text{post}}2) + (\text{Area3}_{\%} * C_{\text{post}}3)$				Roof	4.2	30	0.95	
Area _% = Area/Area _{total}				Park	9.8	70	0.25	
$Q = Area_{total} * C_{total}$				Total	14		0.46	

Scientific Name	Common Name	Placement		
Perennials				
Lobelia cardinalis	Cardinal Flower	Moist Soil		
Aster novaeangliae	New England Aster	Moist Soil		
Asclepias incarnata	Swamp Milkweed	Moist Soil		
Asclepias tuberosa	Butterflyweed	Drier Soils		
Rudbeckia hirta	Black-eyed Susan	Drier Soils		
Echinacea purpurea	Purple Coneflower	Drier Soils		
Grasses				
Schizachyrium scoparium	Little Bluestem	Moist/Dry Soil		
Elymus virginicus	Virginia Wild Rye	Moist/Dry Soil		
Shrubs				
Cephalanthus occidentalis	Buttonbush	Moist Soil		
Myrica pensylvanica	Northern Bayberry	Drier Soils		
Trees				
Acer rubrum	Red Maple	Moist/Dry Soil		
Betula nigra	River Birch	Moist/Dry Soil		


Campus would become more aesthetically pleasing from the added plant life through the implementation of rain gardens and bioswales. Permeable pavers and asphalt will keep the integrity of the parking lots for longer than traditional methods. Not only did this decrease run-off, but the overall infiltration rate of water into the soil increased; other improvements include reduced water use due to the connection of the sprinkler systems to bioswale water collection, an increased permeability in the area, and an increase in the amount of carbon dioxide sequestered by the added vegetation.

Native Plants

Conclusion

