Lynne Cheravitch, Jillian Gaietto, Jessica Pugliese
Advisor: Dr. Gang Yu, Professor of Mathematics, Kent State University

Abstract

Over the past decade, the frequency and sophistication of intrusions into U.S. Sophistication of intrusions into U.S. government, private industries and personal databases has grown exponentially. As the national security, the need for layered and sturdy defenses to protect vital networks and infrastructure is growing. One of the most successful public key encryption methods is he RSA Algorithm, which utilizes the mathematical difficulty of factoring the product of two prime numbers. Our goal is to provide interested parties with an provide interested parties with an understanding of how the RSA Public Key Algorithm works, and how it benefits and Algorthts works, ana how te benelits dependent society. Our combined knowledge was extracted from declassified written materials, consultation with our supervising professor Dr. Gang Yu, and experience working with government agencies.

Setting Up the Algorithm

 Step 1 . We need to have 2 large distinct prime numbers. We call these p and q . Step 2. We find $n=p^{*} q$Step 3. We need to find
phi(n) $=\varphi(\mathrm{n})=(\mathrm{p}-1)^{*}(\mathrm{q}-1)$
Step 4. We need to choose an integer e, <e< $\varphi(n)$ such that $\operatorname{gcd}(e, \varphi(n))=1$ (i.e. e and $\varphi(n)$ are relatively prime).
tep 5. Finally we need to generate the secret" number $d, 1<d<\varphi(n)$, satisfying $\mathrm{d}^{*} \mathrm{e}=1^{(\text {mod }}{ }^{(}(n)$)

Then we have: (n, e) as the public key and ($\mathrm{d}, \mathrm{p}, \mathrm{q}, \varphi(\mathrm{n})$) as the private information. When we put RSA Encryption into action, we will also denote the message that needs encoded as:
$\mathrm{C} \equiv \mathrm{Me}^{(\bmod \varphi(n)}$ where C is the encrypted number and M is the message we are trying to recover.

History of the Algorithm

The concept of public-key encryption was discovered in 1976 by Whitfield Diffie and Martin Hellman. Diffie and Hellman created a method to send messages securely with public key to the cryptographic system. method mathematically. One year later, hree professors from MIT developed the algorithm mathematically and essentially
created one of the most sophisticated created one of the most sophisticated
public key encryption methods still in use oday. Those three professors were Ron Rivest, Adi Shamir and Leonard Adlemen, hence the name, RSA Algorithm. Rivest, Shamir and Adlemen used the
concept of Diffie and Hellman and conceptof Difie and Aellman and function. That is, a function that is easy to compute one way but is nearly impossible lgorithm begins with two large prime numbers. It is easy to compute the product of these tho prime numbers but it is nearly
impossible to mpossible to factor the product of these primes.
In public key encryption, there is no need to exchange a key between two parties before a message is sent. Party B
creates an encryption key and a decrytion creates an encryption key and a decryption
key. B keeps the decryption key private and he publishes the encryption key for all to see. Then, when party A wants to send a message to party B, A uses the encryption
key published by B. Then party B decrypts the message using the confidential encryption key that no one knows but him. Here, the encryption key is the product of our two large prime numbers and our prime numbers. Thus, calculating the decryption key is extremely difficult and could take years to compute. Therefore, using the RSA Algorithm, no key exchange parties and transmitting the message is extremely secure.

Above: Padlock icon from the Firefox Web browser, which indicates that TLS, a public m, is in use.

Left: RSA encryption is used today by constantly switching security keys on devices

The Algorithm

Let our parties A and B , be referred to as Alice and Bob.
A. First Bob creates the encryption and decryption keys as follows:

1) Bob chooses secret prime numbers p and q and computes their product $n=p^{*} q$. Typically p and q are several hundred digits in length.
2) Bob chooses an integer e, such that $\operatorname{gcd}(\mathrm{e},(\mathrm{p}-1)(\mathrm{q}-1))=1$. (Note- $(\mathrm{p}-1)(q-1)=\varphi(\mathrm{n}))$ 3) Bob computes d such that de $\equiv 1 \bmod \varphi(n)$
A. When Alice is ready to send Bob a message, she does the following
3) Alice takes the message and converts it into a number M
4) She takes n and e that Bob published and creates a cyphertext by computing $C \equiv M e$ $(\bmod n)$
5) Alice sends C to Bob.
A. Bob decrypts the message C by doing the following:
6) Bob computes $M=C^{d}(\bmod n)$
theory known Es Eler's Bob converts the number M backization of Fermat's Little Theorem
An outside party would her M back into the message.
An outside party would have the cyphertext C and the encryption key n and e . computed using e, p, and quid need the number d to decrypt the message. Since d is the message. In order to get p and q, you need to factor the number n. And remember p and q are hundreds of digits in length. Thus, factoring n into p and q is nearly impossible and could take years to compute using the fastest computers on Earth. This is why this algorithm is extremely useful and very powerful.

RSA Encryption in Action

 (example provided by Dr. Gang Yu, Professor ofMathematics, Kent State University). We need to let the letters of the alphabet be denoted by numbers, i.et, 00 - "Blank"
01 - "a"; 02 - "b" ... $25-$ " y "; $26-\mathrm{z}$ " Recently, Alice and Bob have been sending message to each other using the RSA nd e=77,893, and only Bob knows that $n=p^{*} q$ and $p=577, q=587$, thus $n=577^{*} 587$. Alice was accepted to graduate school and
Bob asked what school Alice would be Bob asked what school Alice would be
attending. Alice answers $\mathrm{C}=223,208$. What is the graduate school Alice will be ttending?
 1) $(587-1)=337,536$

Using the Euclidean Algorithm we will find our number d satisfying
$\varphi(\mathrm{n})=\mathrm{e}^{*} \mathrm{~b}$
(Where b is an integer and r is the remainder)
$3^{*}+25964$
$77,893=25,964^{*} 3+1$
$=77,893-3(25,964)$
$=77,893-3^{\star}[337,536$
$\stackrel{(4) 77,893]}{=} \mathrm{e}-3^{4}[\varphi$
$=e-3^{*} \varphi(n)-4^{*}(\mathrm{e}$
$=13 \mathrm{e}-3^{*} \varphi(n)$
Hence, $1=\underset{13 e}{13 e}-3^{*} \varphi(n)$ and equivalently, So $d=13$.
3) Our message $\mathrm{C}=223,208$ can be witten

$\mathrm{C}=\mathrm{M}^{\mathrm{m}^{\operatorname{mad} n} n}$. Thus.

Therefore, $\mathrm{M} \equiv \mathrm{C}^{\left(\mathrm{mod}_{n}\right)}$
$\mathrm{C}^{1}=(223,208)^{13}\left({ }^{\text {mod }} 338,699\right)$
Note: $13=8+4+1=2^{3}+2^{2}+1$)
$\mathrm{M} \equiv \mathrm{C}^{13}=\mathrm{C}^{* *} \mathrm{C}^{4 *} \mathrm{C}^{2}$
$\mathrm{C}^{1}=(223,208)^{\prime} \equiv 223208^{\left(\text {mad }_{n}\right)}$
$\mathrm{C}^{2}=(223,208)^{2}=204,4611^{\text {mod }} n$ n
$\mathrm{C}^{4}=(223,208)^{4}=37747^{\left(\operatorname{mad}_{n}\right)}$
$C^{8}=(223,208)^{8}=2680155^{\left(\operatorname{mad}_{n o t} n\right)}$
$M \equiv(268,015)^{*}(37,747)^{*}(223,208)^{\text {maded }_{n}}$
$\left.M \equiv(161,774)^{*}(223208)^{(\bmod d} n\right)$
$\equiv 211902.9988 \approx 211,903$
Evaluating these numbers using our alphabet
key, we get $03=C, 19=S, 21=U$. We encrypt the message backwards, as an integer in our calculations would not begin with a zero. That is,
our answer were 1231402 it t translated our answer were 1231402 , it is translated
$2=b, 14=n, 23=w$ and $1=01=a$. Our answer ould not yield 01231402 as we are dealing with
integers.
Therefore, Alice will be attending USC for

Applied Proof
To define the RSA Algorithm as a genera cryptographic algorithm, there must be a general proof for any message m that must be encrypted. Suppose:

$$
\begin{gathered}
G C D(p, q)=1 \\
N=p q \\
e d=1 \bmod \phi(N)
\end{gathered}
$$

Claim: $(m e) d=m \bmod (N), \forall m \in Z n$
Proof:
Being $m \in Z n$ there are only two possible cases to analyze:

1) $G C D(m, N)=1$

In this case Euler's Theorem stands true, assessing that $m \phi(N)=1(\bmod N)$. As for the claim to prove, because of the third
condition, we can write: ondition, we can write:
$m e) d=m e d=m 1+k \phi(M)$ $m 1+k \phi(N)=m * m k \phi(N)=m *(m \phi(N)) k$, and for Euler's Theorem $m *(m \phi(N)) k=m(\bmod N)$. Proving that the thesis stands in this cas.
2) $G C D(m, N) \neq 1$

In this case Euler's Theorem does not stand rue any more. By the Chinese Remainder Theorem, it is true that if $G C D(p, q)=1$ then: $x=y(\bmod p) \wedge x=y(\bmod q)=x=y(\bmod p q)$ So
by proving the following two statements we would have finished: $(m e) d=m$ modp, $m e) d=m$ modq. Since $G C D(m, M \neq 1$ between $G C D(m, N=p$, and $G C D(m, N=q$
must stand true. Next we must demonstrate that both the above statements stand true in the case $G C D(m, M)=p$, being it absolutely dentical (by switching letters) to prove it for $G C D(m, N)=q$ as well. So let it be $G C D(m$,
$M=p$, this implies that $m=k p$ for some $k>0$ which means that $m($ mod $p)=0$. By concerning the first statement we also have $(m e) d=((k p) e) d$ which therefore results to be multiple of p, and so it is equal to zero. So proven to be satisfied. Concerning the second statement we have that Euler's Theorem results to be proved in $Z q$ since $G C D(m, q)=1$, so: $m \phi(q)=1$ (modq). This me) $d=m e d=m e d-1 m=m h(p-1)(q-1) m=$ $-1) h(p-1) m=1 h(p-1) m=m$ modq. which efinitively proves the second statement and theorem.

