
Public Key Encryption: The RSA Algorithm 

Abstract 
     Over the past decade, the frequency and 
sophistication of intrusions into U.S. 
government, private industries and personal 
databases has grown exponentially. As the 
scale of cyber security threats tips to threaten 
national security, the need for layered and 
sturdy defenses to protect vital networks and 
infrastructure is growing. One of the most 
successful public key encryption methods is 
the RSA Algorithm, which utilizes the 
mathematical difficulty of factoring the 
product of two prime numbers. Our goal is to 
provide interested parties with an 
understanding of how the RSA Public Key 
Algorithm works, and how it benefits and 
protects our information technology-
dependent society. Our combined knowledge 
was extracted from declassified written 
materials, consultation with our supervising 
professor Dr. Gang Yu, and experience 
working with government agencies. 

History of the Algorithm 

   The concept of public-key encryption was 
discovered in 1976 by Whitfield Diffie and 
Martin Hellman. Diffie and Hellman created 
a method to send messages securely with 
a public key to the cryptographic system. 
They were unable however, to create the 
method mathematically. One year later, 
three professors from MIT developed the 
algorithm mathematically and essentially 
created one of the most sophisticated 
public key encryption methods still in use 
today. Those three professors were Ron 
Rivest, Adi Shamir and Leonard Adlemen, 
hence the name, RSA Algorithm.  
    Rivest, Shamir and Adlemen used the 
concept of Diffie and Hellman and 
produced an algorithm using a one-way 
function. That is, a function that is easy to 
compute one way but is nearly impossible 
to compute in reverse. The basis for the 
algorithm begins with two large prime 
numbers. It is easy to compute the product 
of these two prime numbers but it is nearly 
impossible to factor the product of these 
two numbers without knowing the original 
primes.  
     In public key encryption, there is no 
need to exchange a key between two 
parties before a message is sent. Party B 
creates an encryption key and a decryption 
key. B keeps the decryption key private and 
he publishes the encryption key for all to 
see. Then, when party A wants to send a 
message to party B, A uses the encryption 
key published by B. Then party B decrypts 
the message using the confidential 
encryption key that no one knows but him. 
Here, the encryption key is the product of 
our two large prime numbers and our 
decryption key begins with the two large 
prime numbers. Thus, calculating the 
decryption key is extremely difficult and 
could take years to compute. Therefore, 
using the RSA Algorithm, no key exchange 
needs to take place between the two 
parties and transmitting the message is 
extremely secure.  
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RSA  Encryption’s  Creators 

To define the RSA Algorithm as a general 
cryptographic algorithm, there must be a 
general proof for any message m that must 
be encrypted. Suppose: 

GCD(p, q)= 1 
N=pq 

ed=1 mod ϕ(N) 
 

Claim:    (me)d=m mod(N),  ∀ m ∈ Zn 
 
Proof: 
Being m ∈ Zn there are only two possible 
cases to analyze: 
 
     1) GCD(m, N)= 1 
In this case Euler's Theorem stands true, 
assessing that mϕ (N)=1(mod N). As for the 
claim to prove, because of the third 
condition, we can write: 
(me)d=med=m1+kϕ(N), Furthermore, 
m1+kϕ(N)=m∗mkϕ(N)=m∗(mϕ(N))k, and for 
Euler's Theorem  m∗(mϕ(N))k=m(mod N). 
Proving that the thesis stands in this case. 
 
     2) GCD(m, N)≠  1 
In this case Euler's Theorem does not stand 
true any more. By the Chinese Remainder 
Theorem, it is true that if GCD(p, q)=1 then:  
x=y(mod p)∧x=y(mod q)⇒x=y(mod pq) So 
by proving the following two statements we 
would have finished: (me)d=m modp, 
(me)d=m modq. Since GCD(m, N)≠1 
between GCD(m, N)=p, and GCD(m, N)=q 
must stand true. Next we must demonstrate 
that both the above statements stand true in 
the case GCD(m, N)=p, being it absolutely 
identical (by switching letters) to prove it for 
GCD(m,N)=q as well. So let it be GCD(m, 
N)=p, this implies that m=kp for some k>0 
which means that m(modp)=0. By 
concerning the first statement we also have 
(me)d=((kp)e)d which therefore results to be 
a multiple of p, and so it is equal to zero. So 
the first statement becomes 0=0 and is 
proven to be satisfied. Concerning the 
second statement we have that Euler's 
Theorem results to be proved in Zq since 
GCD(m,q)=1, so: mϕ(q)=1(modq). This 
implies that we can write: 
(me)d=med=med−1m=mh(p−1)(q−1)m=(mq
−1)h(p−1)m=1h(p−1)m=mmodq. which 
definitively proves the second statement and 
theorem. 

Resources: The RSA Algorithm. (n.d.). Retrieved March 24, 2015, from http://facultyfp.salisbury.edu/despickler/personal/Resources/TechnologyWorkshops/ScienceNight2013/RSAHandout.pdf Photo taken from http://imps.mcmaster.ca/courses/SE-4C03-07/wiki/wrighd/rsa_alg.html The RSA Algorithm. (n.d.). Retrieved March 24, 2015, from 
http://facultyfp.salisbury.edu/despickler/personal/Resources/TechnologyWorkshops/ScienceNight2013/RSAHandout.pdf 
 

Setting Up the Algorithm 
Step 1. We need to have 2 large distinct 
prime numbers. We call these p and q. 

Step 2. We find n=p*q 

Step 3. We need to find  

            phi(n)=φ(n)=(p-1)*(q-1) 

Step 4. We need to choose an integer e, 
1<e<  φ(n)  such  that  gcd(e,  φ(n))=1  (i.e.  e  and  
φ(n)  are  relatively  prime). 

Step 5. Finally we need to generate the 
“secret”  number  d,  1<d<  φ(n),  satisfying  
d*e≡1(𝑚𝑜𝑑  𝜑(𝑛)) 

Then we have: (n,e) as the public key and 
(d,p,q,  φ(n))  as  the  private  information. 

¾ When we put RSA Encryption into action, 
we will also denote the message that 
needs encoded as:  

C≡Me 𝑚𝑜𝑑  𝜑 𝑛  where C is the encrypted 
number and M is the message we are 
trying to recover. 

  

RSA Encryption in Action 

(example provided by Dr. Gang Yu, Professor of 
Mathematics, Kent State University). 

We need to let the letters of the alphabet be 
denoted by numbers, i.et, 00 – “Blank”;;          
01 – “a”;;  02  – “b”  …  25  – “y”;;  26  – “z” 
Recently, Alice and Bob have been sending 
message to each other using the RSA 
Algorithm. Their public key is n=338,699 
and e=77,893, and only Bob knows that 
n=p*q and p=577, q=587, thus n=577*587. 
Alice was accepted to graduate school and 
Bob asked what school Alice would be 
attending. Alice answers C=223,208. What 
is the graduate school Alice will be 
attending? 
1) First  we  need  to  find  φ(n)=  φ(p*q)=(577-

1)(587-1) = 337,536 
2) Using the Euclidean Algorithm we will 

find our number d satisfying 
d*e≡1(𝑚𝑜𝑑  𝜑(𝑛)). 

φ(n)=e*b + r  
(Where b is an integer and r is the 

remainder) 
337,536 = 77,893*4 + 25964 
77,893 = 25,964*3 + 1 
1 = 77,893 – 3(25,964) 
   = 77,893 – 3*[337,536-
(4)77,893] 
  =  e – 3*[  φ(n)-4*(e)] 
  = 13e – 3*φ(n)   

Hence, 1 = 13e – 3*φ(n)  and  equivalently,  
13e≡1 𝑚𝑜𝑑  𝜑 𝑛 .   

So d = 13. 
3) Our message C=223,208 can be written   

    C≡Me 𝑚𝑜𝑑
  𝑛 .  Thus, 

Ct  ≡  (Me)t(𝑚𝑜𝑑  𝑛) ≡ M(3*φ(n)+1)(𝑚𝑜𝑑  𝑛) ≡            
M(φ(n))*3  M(𝑚𝑜𝑑  𝑛) ≡ (1)3M(𝑚𝑜𝑑  𝑛) ≡ M(𝑚𝑜𝑑  𝑛) 
Therefore, M ≡  Ct (𝑚𝑜𝑑  𝑛) 
Ct  ≡ (223,208)13 (𝑚𝑜𝑑 338,699) 

(Note: 13 = 8 + 4 + 1 = 23 + 22 + 1) 

M ≡ C13 ≡  C8 * C4 * C1  

¾ Find C1, C2, C4, C8    

C1 = (223,208)1 ≡ 223208 (𝑚𝑜𝑑  𝑛) 
C2 = (223,208)2 ≡ 204,461 (𝑚𝑜𝑑  𝑛) 
C4 = (223,208)4 ≡ 37747 (𝑚𝑜𝑑  𝑛) 
C8 = (223,208)8 ≡ 268015 (𝑚𝑜𝑑  𝑛) 

¾ M ≡ (268,015)*(37,747)*(223,208) (𝑚𝑜𝑑  𝑛) 
M ≡ (161,774)*(223208) (𝑚𝑜𝑑  𝑛) 
M ≡ 211902.9988  ≈211,903 

Evaluating these numbers using our alphabet 
key, we get 03=C, 19=S, 21=U. We encrypt the 
message backwards, as an integer in our 
calculations would not begin with a zero. That is, 
if our answer were 1231402, it is translated 
02=b, 14=n, 23=w and 1=01=a. Our answer 
would not yield 01231402 as we are dealing with 
integers.  

Therefore, Alice will be attending USC for 
graduate school!  

  

 

 
  

Friendly Reminder: 

How to find (223208)2 ≡ 204,461 (𝑚𝑜𝑑  𝑛) 
1) Take (223208)2 / 338699 = 147097.6037 
2) Subtract the integer and multiply the 

decimal by n 
147097.6037-147097=.6037 
.6037*338699  =  204460.9994  ≈  204461 

Let our parties A and B, be referred to as Alice and Bob. 

A. First Bob creates the encryption and decryption keys as follows: 
1) Bob chooses secret prime numbers p and q and computes their product n=p*q. 

Typically p and q are several hundred digits in length. 
2) Bob chooses an integer e, such that gcd(e, (p-1)(q-1)) = 1. (Note- (p-1)(q-1)  =  φ(n)) 
3) Bob computes d such that de≡1  mod  φ(n) 
4) Bob publishes (n,e) and he keeps (d,p,q,  φ(n))  private. 
A. When Alice is ready to send Bob a message, she does the following: 
1) Alice takes the message and converts it into a number M. 
2) She takes n and e that Bob published and creates a cyphertext by computing C≡Me 

(mod n) 
3) Alice sends C to Bob. 
A. Bob decrypts the message C by doing the following: 
1) Bob computes M≡Cd (mod n) 

a.Note - Cd (mod n) is congruent to the number M based on a theorem from number 
theory  known  as  Euler’s  generalization  of  Fermat’s  Little  Theorem.   

2) Bob converts the number M back into the message. 

An outside party would have the cyphertext C and the encryption key n and e. 
However, this third party would need the number d to decrypt the message. Since d is 
computed using e, p, and q, the third party would need the numbers p and q to decode 
the message. In order to get p and q, you need to factor the number n. And remember 
p and q are hundreds of digits in length. Thus, factoring n into p and q is nearly 
impossible and could take years to compute using the fastest computers on Earth. This 
is why this algorithm is extremely useful and very powerful. 

The Algorithm 

Applied Proof 

Above: Padlock icon from the Firefox Web 
browser, which indicates that TLS, a public-
key cryptography system, is in use. 
 
Left: RSA encryption is used today by 
constantly switching security keys on devices 


