APPENDIX
APPENDIX A
(Sample Title Page for Master’s Thesis)

CONSTRUCTION OF A SCORING MANUAL FOR THE SENTENCE STEM
“A GOOD BOSS—” FOR THE SENTENCE COMPLETION TEST INTEGRAL
(SCTI-MAP)

ANGELA C. MINIARD

Bachelor of Science in Psychology
John Carroll University
May 2002

submitted in partial fulfillment of requirements for the degree
MASTER OF EDUCATION
at the
CLEVELAND STATE UNIVERSITY
May 2009
APPENDIX B
(Sample Title Page for Doctoral Dissertation)

MASS SPECTROMETRIC ANALYSIS OF ENVIRONMENTAL CONTAMINANTS, PROTEIN STRUCTURE AND EXPRESSION

IAN E. ATKINSON

Bachelor of Science in Zoology
Miami University
August 1996

Master of Science in Chemistry
Cleveland State University May 2001

submitted in partial fulfillment of requirements for the degree
DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY
at the
CLEVELAND STATE UNIVERSITY
DECEMBER 2008
APPENDIX C
(Sample Copyright Page)

©COPYRIGHT BY IAN ERIC ATKINSON 2008
APPENDIX D –
Sample Approval Page)

The student or their department creates this page

We hereby approve this thesis/dissertation
(Choose appropriate word for Master or Doctoral)
For

(Student’s Name)

Candidate for the ____________ degree

for the Department of

And

CLEVELAND STATE UNIVERSITY’S
College of Graduate Studies by

Signature of Chairperson of the Committee here
Type Name of Chairperson of the Committee

Department & Date

Signature of Committee Member here
Type Name of Committee Member

Department & Date

Signature of Committee Member here
Type Name of Committee Member

Department & Date

Student’s Date of Defense

Note: Additional lines may be added if there are more Committee Members.
College of Graduate Studies 15 JAN 2014
APPENDIX E
(Sample Abstract Page)

MASS SPECTROMETRIC ANALYSIS OF ENVIRONMENTAL CONTAMINANTS, PROTEIN STRUCTURE AND EXPRESSION

IAN E. ATKINSON

ABSTRACT

There are a wide array of sciences at our disposal to further our understanding of the roles of toxins in the environment and their effects on living organisms. Of these disciplines, the field of mass spectrometry offers a powerful analytical means to identify compounds in varying and complex sample media. The presence of altered expressions of biomolecules upon exposure to toxins, the effects that these toxins may have on biomolecule structure and the identity of toxins in the sample all can be determined by mass spectrometry.

In this study mass spectrometric analysis has been applied to environmental toxicological problems. First, the altered protein expression under various metal stress in Helianthus annuus (dwarf sunflower), a proven hyperaccumulator of toxic metals was analyzed by this research. Second, a model was developed for mass spectrometrically determining the location and structural effects that another class of environmental toxins, poly aromatic hydrocarbons (PAHs) can have on proteins. Third, the presence of PAHs in environmental samples taken from Lake Bolgoda and Lake Beira, Sri Lanka, was analyzed by mass spectrometry to determine the types, relative concentrations and potential sources of these toxins.

The work has demonstrated the versatility and effectiveness of the methodology, discovering novel protein expression in H. annuus upon metal exposure, pinpointing site mediated adductions reactions on protein structure, and the qualitative and quantitative determination of toxins in environmental samples.
APPENDIX F
(Sample Table of Contents)

TABLE OF CONTENTS

ABSTRACT.. v
LIST OF TABLES.. x
LIST OF FIGURES.. xi
NOMENCLATURE... xii

CHAPTER

I. INTRODUCTION... 1
 * 1.1 STOVL/Powered Lift Background... 6
 1.2 Literature Review... 14
 1.3 Scope of Work.. 19

II. EXPERIMENTAL FACILITY.. 23
 2.1 Facility Description... 25
 * 2.1.1 Thrust Balance.. 25
 2.1.2 Air Supply System.. 27
 2.1.3 Instrumentation System... 28
 2.2 Facility Calibrations... 32
 2.2.1 Static Hydraulic Calibration.. 32
 2.2.2 Pressure Tare Calibration... 33

III. DESCRIPTION OF EXPERIMENT... 37
 3.1 Model Specifications... 37
 3.2 Instrumentation... 39
3.3 Cold Flow Tests... 45
 3.3.1 Flow Visualization.................................... 45
 3.3.2 Configuration Changed for Performance Optimization........ 48
IV. RESULTS AND DISCUSSION... 52
 4.1 Thrust Augmentation Ratio.............................. 53
 4.1.1 Cold Flow Tests.................................. 54
 4.1.2 Hot Flow Tests.................................. 62
 4.2 Surface Static Pressures............................... 65
V. CONCLUDING REMARKS.. 92

BIBLIOGRAPHY.. 96

APPENDICES... 99
 A. Ejector Thrust Improvement............................. 100
 B. Ejector Community Noise Problem................... 102
 C. Calibration and Thrust Calculations................ 105
 D. Sample PLF Plots... 108

INDEX (if any)... 110

*The numbering of subheadings (1.1, 2.1.1, etc...) within a chapter is the student’s preference. However, if numbers are noted in the Table of Contents, the numbering must be replicated within the text body.
APPENDIX G
(Sample List of Tables)

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Principal Conclusions from Burke Experiments</td>
<td>7</td>
</tr>
<tr>
<td>II. Dimensions of the Computational Domain</td>
<td>57</td>
</tr>
<tr>
<td>III. Independent Variables</td>
<td>59</td>
</tr>
<tr>
<td>IV. Predicted Effects of Gravity on the Flame Dimensions</td>
<td>64</td>
</tr>
<tr>
<td>a) For methane-air flames</td>
<td>65</td>
</tr>
<tr>
<td>b) Statistical results</td>
<td>66</td>
</tr>
<tr>
<td>Sub tables are not required, use only when necessary</td>
<td></td>
</tr>
<tr>
<td>V. Predicted Effects of the Inlet Velocity</td>
<td>75</td>
</tr>
<tr>
<td>a) With the oxidizer inlet velocity equal to 5.0 cm/sec</td>
<td>81</td>
</tr>
<tr>
<td>b) With the oxidizer inlet velocity equal to 10.0 cm/sec</td>
<td>82</td>
</tr>
<tr>
<td>c) With the oxidizer inlet velocity equal to 15.0 cm/sec</td>
<td>83</td>
</tr>
<tr>
<td>VI. Fuel Properties</td>
<td>90</td>
</tr>
<tr>
<td>VII. Predicted Effects of the Oxygen Fraction</td>
<td>101</td>
</tr>
<tr>
<td>VIII. Predicted Effects of the Diluent</td>
<td>106</td>
</tr>
<tr>
<td>IX. Experimental Results</td>
<td>147</td>
</tr>
</tbody>
</table>
APPENDIX H
(Sample List of Figures)

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Burke-Schumann Diffusion Flame</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Effect of Reduced Pressure on the Flame Size and Shape</td>
<td>11</td>
</tr>
<tr>
<td>3.</td>
<td>Flame Shape</td>
<td>40</td>
</tr>
<tr>
<td>4.</td>
<td>Flame Height</td>
<td>46</td>
</tr>
<tr>
<td>5.</td>
<td>Flame Width</td>
<td>47</td>
</tr>
<tr>
<td>6.</td>
<td>Flame Height/Width</td>
<td>48</td>
</tr>
<tr>
<td>7.</td>
<td>Flame Tip Sphericity</td>
<td>51</td>
</tr>
<tr>
<td>8.</td>
<td>Viscosity as a Function of Temperature</td>
<td>55</td>
</tr>
<tr>
<td>9.</td>
<td>Heat Capacity as a Function of Temperature</td>
<td>55</td>
</tr>
<tr>
<td>10.</td>
<td>Thermal Conductivity as a Function of Temperature</td>
<td>56</td>
</tr>
<tr>
<td>11.</td>
<td>Predicted Effect of Gravity on the Flame Shape</td>
<td>61</td>
</tr>
<tr>
<td>12.</td>
<td>Predicted Effect of Gravity on the Temperature Distribution</td>
<td>70</td>
</tr>
<tr>
<td>13.</td>
<td>Predicted Flame Shape as a Function on the Inlet Velocity and Gravity</td>
<td>72</td>
</tr>
<tr>
<td>14.</td>
<td>Predicted Effect of the Inlet Velocity on the Flame Height</td>
<td>73</td>
</tr>
</tbody>
</table>
APPENDIX I
(Sample Copyright Permission for Dissertation pages)

Ian Atkinson < >
03/18/2009 01:54 PM
To @csuohio.edu
cc
Subject Re: Dissertation Abstract

Good Afternoon,

Of course you are most welcome to use any of the materials for the booklet you are constructing.

-Ian

On Tue, Mar 17, 2009 at 9:28 AM, @csuohio.edu wrote:

Hello Ian,

We are updating the Thesis and Dissertation Guidelines. I was hoping you would give us permission to use your dissertation abstract and your title page as samples for the booklet. Attached are the two pages I would like to use. Please let me know if this is a possibility. Thank you very much for your consideration.

Graduate Student Services
College of Graduate Studies
Parker-Hannifin Hall, 3rd Floor

CONFIDENTIALITY NOTICE:
This email message, including attachments, is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by reply email and destroy all copies of the original message.
APPENDIX J
(Sample Title Page for MFA Thesis)

CONSTRUCTION OF A SCORING MANUAL FOR THE SENTENCE STEM
“A GOOD BOSS—” FOR THE SENTENCE COMPLETION TEST INTEGRAL
(SCTI-MAP)

ANGELA C. MINIARD

Bachelor of Science in Psychology
John Carroll University
May 2002

submitted in partial fulfillment of requirements for the degree

MASTER OF FINE ARTS IN CREATIVE WRITING
at the
NORTHEAST OHIO MFA
and
CLEVELAND STATE UNIVERSITY
May 2009
We hereby approve this thesis

For

(Student’s Name)

Candidate for the Master of Fine Arts in Creative Writing degree

Department of

English, the Northeast Ohio MFA Program

and

CLEVELAND STATE UNIVERSITY’S

College of Graduate Studies by

Signature of Chairperson of the Committee here

Type Name of Chairperson of the Committee

Department & Date

Signature of Committee Member here

Type Name of Committee Member

Department & Date

Signature of Committee Member here

Type Name of Committee Member

Department & Date

Student’s Date of Defense

Note: Additional lines may be added if there are more Committee Members.