Dynamics of a Linear Polymer in a Microchannel

Creeping flow

(A Summer Research experience under Dr. Fodor and Dr. Kaufman)

Prasenjit Bose

Physics Department
Cleveland State University

Abstract:
An understanding of the dynamics of a polymer in a microchannel could be used to design the technology for high throughput molecular analysis and manipulation. We simulate the motion of a linear polymer advected by a fluid in a rectangular microchannel. We consider the creeping laminar flow, i.e., zero Reynolds number. The model polymer is made up of beads connected by elastic springs. The polymer is released in the fluid and the Newton’s 2nd law for each bead is calculated numerically using 4th order Runge-Kutta techniques. The dynamics of this nonlinear mechanical system is studied as a function of model parameters: the spring equilibrium distance, the mass of a bead, and the spring constant.

WHERE
SI – 117

WHEN
Noon-1pm
Thursday, March 10, 2011