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Abstract 

 

In this paper we describe different power management techniques aiming to reduce power 

consumption in computer systems. On one hand, static techniques, applied at design time, have 

been presented with a variety of simulation and measurement tools, targeting different levels of 

the system’s hardware and software components. On the other hand, dynamic power 

management techniques, applied at runtime, were also discussed. These dynamic techniques aim 

at reducing energy consumption at CPU level, using DVS, but also try to save energy of the 

overall system and even on a cluster system level. 

 

1  Introduction 

Performance optimization has long been the goal of different architectural and systems software 

studies, driving technological innovations to the limits for getting the most out of every cycle. 

This quest for performance has made it possible to incorporate millions of transistors on a very 

small die, and to clock these transistors at very high speeds. While these innovations and trends 

have helped provide tremendous performance improvements over the years, they have at the same 

time created new problems that demand immediate consideration. An important and daunting 

problem is the power consumption of hardware components, and the resulting thermal and 

reliability concerns that it raises making power as important a criterion for optimization as 

performance in both high-end and low-end systems design. 

Reducing power consumption is a challenge to system designers. Portable systems, such 

as laptop computers and personal digital assistants (PDAs) draw power from batteries; so 

reducing power consumption extends their operating times. For desktop computers or servers, 

high power consumption raises temperature and deteriorates performance and reliability. 
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In this paper we will discuss some of the power management techniques proposed so far 

in the literature. Power reduction techniques can be classified as static and dynamic. Static Power 

Management (SPM) techniques, such as synthesis and compilation for low power, are applied at 

design time (off-line) and target both hardware and software. In contrast, dynamic techniques use 

runtime (on-line) behavior to reduce power when systems are serving light workloads or are idle. 

These techniques are known as Dynamic Power Management (DPM). An overview of these 

techniques is presented in Table 1. 

 

Table 1: Power Management Techniques Classification Overview 

SPM (off-line optimization) 
System/ 
Component 
Under Test 
(SUT/CUT) 

 
Level of Detail 

 
Evaluation 

Methodology 

 
Description 

 
Section 

RTL level Cycle-level simulation Energy models on   
Simplescalar simulator 
[18] such as Wattch [2] 
and SimplePower [3]  

2.1.1 CPU 

Instruction level Instruction-level 
simulation 

Energy models on  
ARMulator simulator [4], 
JouleTrack [5] 

2.1.2 

Hardware component 
level (e.g. hardware state 
such as CPU sleep/ 
doze/busy, LCD on/off, 
etc.) 

Functional simulation  
(Parameters via 
measurements) 

POSE (Palm OS 
Emulator) [6] 
 

2.2.1 

Software component level 
(Procedure / process / 
task) 

Measurements 
(Monitoring tools) 

Time driven sampling - 
PowerScope [7] and 
Energy driven sampling  
[8] 

2.2.2 

System 

Hardware & software 
component level 
 

Complete system 
simulation (CPU, disc, 
memory, OS, and 
application) 

SoftWatt built upon 
SimOS system simulator 

2.2.3 

DPM (on-line optimization) 
System/ 
Component 
Under Test 
(SUT/CUT) 

 
Implementation level 

 
Methodology 

 
Description 

 
Section 

 
 
CPU 

CPU and system software 
 

DVS (Dynamic Voltage 
Scaling) 

Interval-based scheduler  
[10,11] and Real-time 
system schedulers [12,13] 

3.1 

 
System 

Components hardware 
(Disk, network interfaces, 
displays, I/O devices, etc.) 
and system software 

Low power mode of 
operation 

Shutdown/low- power  
unused devices [15,16] 
 

3.2 

Cluster 
system 

CPU and system software CVS (Coordinated 
Voltage Scaling) 

Coordinated DVS among 
multiple nodes [17] 

3.3 
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In the next section we present an overview of the classification of these different 

techniques. Section 2 describes some power measurement and simulation tools targeting different 

levels of hardware and software implementations and trying to achieve improvements and 

optimizations during design time. Some of these static power management techniques, targeting 

off-line optimization, are presented. In section 3 we discuss dynamic power management 

techniques targeting system runtime behavior in order to reduce energy at different system levels, 

achieving on-line optimization. 

 

2  Static Power Management (SPM) Techniques 

Power dissipation limits have emerged as a major constraint in the design of microprocessors, and 

just as with performance, power optimization requires careful design at several levels of the 

system architecture. Different energy models were presented in previous studies and integrated 

with already known simulators and measurement tools, targeting different system levels and 

providing power estimation, measurement and optimization at design time. 

These studies can be divided mainly into two areas. The first one is a low-level approach 

targeting the CPU and investigating its power consumption at both cycle and instruction levels. 

This CPU-level approach will be described in subsection 2.1. The second approach is a high-level 

approach targeting different or all system components. This system-level approach will be 

described in subsection 2.2. 

 

2.1 CPU-level SPM 

Power consumed by the CPU is significant. In papers [1-5], the CPU was the main target of 

power consumption analysis. Many power-aware models were presented and integrated into 

already-in-use performance simulators in order to investigate power consumption of the CPU, on 

a unit basis or for the processor as whole. These investigations were mainly held on two 

abstraction levels: the register-transfer level (or cycle-level), described in subsection 2.1.1, and 

the instruction-level, in subsection 2.1.2. 

 

2.1.1 Register-transfer level 

Processor energy consumption is generally estimated by register-transfer level (RTL) or cycle-

level simulators [1-3]. During every cycle of the simulated processor operation, the activated (or 

busy) microarchitecture-level units or blocks are known from the simulation state. Depending on 

the workload, a fraction of the processor units are active at any given cycle. We can use these 
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cycle-by-cycle resource usage statistics, available from a trace or execution-driven performance 

simulator, to estimate the unit-level activity factors. If accurate energy models exists for each 

modeled resource, on a given cycle and if unit i is accessed or used, we can estimate the 

corresponding energy consumed and add it to the net energy spent overall for that unit. So, at the 

end of a simulation, we can estimate the total energy spent on a unit basis as well as for the whole 

processor. 

In these papers [1-3], the proposed energy models were all built upon SimpleScalar [18], 

a suite of publicly available tools simulating modern microprocessors that implements the 

SimpleScalar architecture (a close derivative of MIPS architecture). The tool set takes binaries 

compiled for the SimpleScalar architecture and simulates their execution on one of several 

provided processor simulators. The advantages of the SimpleScalar tools are high flexibility, 

portability, extensibility, and performance. 

In [1], two types of energy models, were presented: (1) power-density-based models for 

design lines with available power and area measurements from implemented chips; and (2) 

analytical models in terms of microarchitecture-level design parameters such as issue width, 

number of physical registers, pipeline stage lengths, misprediction penalties, cache geometry 

parameters, queue/buffer lengths, and so on. The analytical energy behavior was based on simple 

area determinants and the constants validated with circuit-level simulation experiments using 

representative tests. 

The base microarchitecture model adopted in [1] is a generic, parameterized, out-of-order 

superscalar processor. The power-performance simulation shows a cycle-by-cycle resource usage 

statistics to estimate the total energy spent on a unit based as well as for the whole processor. The 

relationship between performance, power and L1 data cache size was evaluated: the small CPI 

benefits of increasing the data cache are outweighed by the increases in power dissipation due to 

large cache. Then, the effects of varying all of the resource sizes within the processor core are 

shown, including issue queues, rename registers, branch predictor tables, memory disambiguation 

hardware, and the completion table. Finally, some power-efficient microarchitecture design ideas 

and trends were discussed: (1) Single-core, wide-issue, superscalar processor chip paradigm, 

where increasing the superscalar width beyond a certain limit seems to yield diminishing gains in 

performance, while continuously reducing the performance power efficiency metric. (2) 

Multicluster superscalar processors, where the classical superscalar CPU is replaced with a set of 

clusters, so that all key energy consumers are split among clusters. (3) VLIW or EPIC 

microarchitectures, where much of the hardware complexity could be moved to the software. (4) 

Chip multiprocessing, where multiple processor cores on a single die can operate in various ways 
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to yield scalable performance in a complexity and power-efficient manner. (5) Multithreading, 

where the processor core shares its execution-time resources among several simultaneously 

executing threads. (6) Compilers, supporting the microarchitecture in reducing the power 

consumption. (7) Energy-efficient cache architectures, like filter cache and the dynamic cache 

size changing during program execution. 

For Wattch [2], the foundations for the power-modeling infrastructure are parameterized 

power models of common structures present in modern superscalar microprocessors. The power 

consumption of the units modeled was considered to depend particularly on the internal 

capacitances for the circuits that make up the processor. The main modeled processor units fall 

into four categories: (1) Array structures, (2) fully associative content-addressable memories, (3) 

combinational logic and wires, and (4) clocking. 

Wattch was found to be 1000x faster than existing layout-level power tools, and yet 

maintains accuracy within 10% of their estimates. Three possible usage flows of Wattch were 

presented in [2] making it as handy for architects as for compiler writers who might use Wattch to 

evaluate power consumption in their design process. The first usage scenario applies to cases 

where the user is interested in comparing several design configurations that are achievable simply 

by varying parameters for hardware structures already modeled. The second usage scenario is for 

software or compiler development, where a single hardware configuration is used and several 

programs are simulated and compared. The last scenario highlights Wattch’s modularity. 

Additional hardware modules can be added to the simulator. When performing power studies, 

Wattch provides result for a variety of metrics like power, performance, energy, and energy-delay 

product. 

Another execution driven, cycle-accurate RT level energy estimation tool, SimplePower, 

was presented in [3]. SimplePower was developed based on transition-sensitive energy models, 

where each functional unit has its own energy model from a table containing the power consumed 

for each input transition. It simulates the integer subset of the instruction set of SimpleScalar. The 

simulation flow uses SimpleScalar compiler toolset to convert the C source benchmarks to 

SimplePower executables. SimplePower simulates these executables providing cycle-by-cycle 

energy estimates and the switch capacitance statistics for the processor datapath, memory and on-

chip buses. The major components of SimplePower are: SimplePower core, RTL power 

estimation interface, technology dependent switch capacitance tables, cache/bus estimator, and 

loader. 

SimplePower was used to study different architectural optimizations using a set of 

benchmarks: (1) Gating pipeline registers: The selective gated pipeline register optimization 
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focuses on reducing the power consumption by using the control signals of the datapath for 

selectively gating subsets of the pipeline registers. It was observed that 23-36% energy reduction 

is possible in the datapath, 50% in the pipeline registers and 46% in the register file. (2) Memory 

system power optimization: data transformations are proposed to improve spatial locality in 

situations where loop transformations are not effective. These transformations, instead of 

changing the loop execution order, modify the underlying memory layouts of multidimensional 

arrays, corresponding to variable-renaming operations. Significant energy savings was observed 

only for smaller cache sizes and associativities, but it had no effect on the processor core 

consumption. (3) Bus power optimization: it consists of reducing the switching activity on the 

Icache data bus by relabeling the register fields of the compiler-generated instructions. 12% 

reduction in the total energy reduction in the Icache data bus using the register relabeling 

optimization was observed. 

 

2.1.2 Instruction-level 

An additional approach for energy estimation, using instruction-level power analysis, was 

presented in [4,5]. This technique estimates the energy consumed by a program by summing the 

energy consumed by the execution of each instruction. Instruction-by-instruction energy costs are 

precharacterized once for all for each target processor. 

In [4], processor instruction-level simulator and memory model were tightly integrated 

together with an accurate battery model. A methodology was developed were each component is 

characterized with equivalent capacitance for each of its power states. Energy spent per cycle is a 

function of equivalent capacitance, current voltage, and frequency. The equivalent capacitance 

allows to easily scaling energy consumed for each component as frequency or voltage of 

operation change. Equivalent capacitances are calculated given the information provided in data 

sheets. The total energy consumed by the system per cycle is the sum of energies consumed by 

the processor and L1 cache, interconnects and pins, memory, L2 cache, the DC-DC converter and 

the efficiency losses in the battery. Models for energy consumption and performance estimation 

of each of these system components were described in [4]. The system used to illustrate this 

methodology is the SmartBadge with an ARM processor. As a result, the energy models were 

implemented as extensions to the instruction-level simulator for the ARM processor family called 

the ARMmulator normally used for functional and performance validation. 

A software energy estimation methodology, presented in [5], avoids explicit 

characterization of instruction energy consumption and predicts energy consumption to within 

3% accuracy for a set of benchmark programs evaluated on the StrongARM SA-1100 and Hitachi 
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SH-4 microprocessors. Based on experiments done on these processors, it was concluded that the 

common overheads present across instructions result in the variation in current consumption of 

different instructions being small. The variation in current consumption of programs is even 

smaller. Therefore, to a first order, we can assume that the current consumption depends only on 

operating frequency and supply voltage and is independent of the executing program. A second 

order model that uses energy differentiated instruction classes/cycles is also proposed and it was 

shown that the resulting current prediction error was reduced to less than 2%. A methodology for 

separating the leakage and switching energy components was also discussed. 

 

2.2 System-level SPM 

There is little benefit in optimizing only the CPU core if other elements participate or sometimes 

even dominate the energy consumption. To effectively optimize system energy, it is necessary to 

consider all of the critical components. Different papers [6-9] investigate the power consumption 

on different system levels, targeting both hardware and software on different levels of abstraction. 

In subsection 2.2.1, state-level models and measurements are used to account for the 

energy consumption of the whole system based on the state each device is in or transiting from or 

to. In subsection 2.2.2, measurements are used to find the system power consumption and help 

targeting the hotspots in applications and operating system procedures. This approach tries to 

reduce energy consumption by acting on the application- and OS-level. Finally, subsection 2.2.3 

describes a complete system level simulation tool which models the CPU, memory hierarchy and 

a low power disk subsystem and quantifies the power behavior of both the application and 

operating system. 

 

2.2.1 State-level models 

A high-level energy optimization technique was presented in [6]. The proposed energy model 

uses a level of abstraction that reduces the complexity of the hardware state sufficiently by 

encapsulating low-level details, but encompasses enough information to allow high-level energy 

optimization. This energy model identifies a set of device power states and transitions between 

the states that are based on the hardware subsystems of the device. It assumes that the relevant 

transitions between states occur as the result of system calls, and that, by keeping track of system 

calls, the system may monitor its own energy consumption. For each separate hardware 

subsystem, a set of device states is defined. The device states are differentiated by the power 

consumption of the hardware during steady state (e.g. backlight ON versus backlight OFF). Each 

state is assigned a power consumption cost by measuring the steady state power consumption in 
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that state. Each transition between states is assigned an energy consumption cost by measuring 

the transitional energy consumption. The total energy consumed by the system is determined by 

summing the power of each device state multiplied by the time spent in each state plus the total 

energy consumption for all transitions. 

The simulation environment was implemented as an extension of the Palm OS Emulator 

(POSE). POSE is a Windows based application that simulates functionality of the Palm device, 

emulating its operating system and instruction execution of the Motorola Dragonball processors 

used in the Palm. The power state model for the Palm was incorporated into this existing 

environment. 

To quantify the power consumption of a device and parameterize the simulator, 

experiments were held and measurements were taken using the energy model described above in 

order to capture transient energy consumption as well as steady state power consumption. A 

Workpad device was connected to a power supply with an oscilloscope measuring the voltage 

across a small resistor. The power consumption of the basic hardware subsystems of the IBM 

Workpad device was measured: CPU, LCD, Backlight, Buttons, Pen and Serial link. 

Measurement programs, like Power and Millywatt, were used to provide a user interface to call 

some of the basic functions of the device for measurement intervals. Another category of Palm 

applications, like Energy Monitor and Hackmaster, were used to validate the results of the 

simulator. 

 

2.2.2 Application- and OS-level 

An alternative approach for energy estimation using measurements as a basic for estimation was 

presented in [7,8]. Targeting the power consumption of the whole system and trying to pinpoint 

the hotspots in applications and operating system procedures, these tools mainly help 

programmers to produce power aware programs. 

In [7], PowerScope maps energy consumption to program structure by augmenting the 

information gathered by a time-driven statistical sampler. Using PowerScope, one can determine 

what fraction of the total energy consumed during a certain time period is due to specific 

processes in the system. Further, one can drill down and determine the energy consumption of 

different procedures within a process. By providing such fine-grained feedback, PowerScope 

allows attention to be focused on those system components responsible for the bulk of energy 

consumption. As improvements are made to these components, PowerScope quantifies their 

benefits and helps expose the next target for optimization. Through successive refinement, a 

system can be improved to the point where its energy consumption meets design goals. 
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The functionality of PowerScope is divided among three software components. Two 

components, the System Monitor and Energy Monitor, share responsibility for data collection. 

The System Monitor samples system activity on the profiling computer by periodically recording 

information that includes the program counter (PC) and process identifier (PID) of the currently 

executing process. The Energy Monitor runs on the data-collection computer, and is responsible 

for collecting and storing current samples from the digital multimeter. Because data collection is 

distributed across two monitor processes, it is essential that some synchronization method ensure 

that they collect samples closely correlated in time. Synchronizing the components was achieved 

by having the digital multimeter signal the profiling computer after taking each sample. The final 

software component, the Energy Analyzer, uses the raw sample data collected by the monitors to 

generate the energy profile, off-line. The analyzer runs on the profiling computer since it uses the 

symbol tables of the executables on disk to map samples to specific procedures. 

The tool presented in [8] is based on energy-driven statistical sampling and use energy 

consumption to drive sample collection. A simple ‘energy counter’  is interposed between the 

energy supply and the system under study. This counter measures the energy consumed by the 

system and causes an interrupt to be generated on the system whenever a predefined amount of 

energy, i.e. energy quanta, has been consumed. The system handles these interrupts by executing 

a particular interrupt service routine that will record samples identifying the program instructions 

that were interrupted. The recorded samples are processed, off-line, to generate energy 

consumption estimates for each application, procedure, and instruction. Results using the energy 

profiler to study the behavior of 13 benchmarks programs show that a non-trivial amount of 

energy is spent by the operating system. Additionally, there are often significant differences 

between the profiles generated by time and energy profiling, especially in workloads that 

transition between multiple energy states. 

In 3.1.2, we discussed some power models built upon ARMulator, the instruction-level-

simulator for the ARM processors. However in this same paper, [4], a system profiler that 

correlates both energy consumption and performance to the source code was also integrated into 

the simulator. During each time interval, the simulator calculates energy consumption of all 

system components. The profiler works concurrently with the simulator. It periodically samples 

the simulation results (using sample interval specified by the user) and maps the energy and 

performance to the function executed using information gathered at the compile time. Once the 

simulation is complete, the results of profiling can be printed out by the total energy or time spent 

in each function. MP3 audio decoder was presented as an example of how to use the profiler to 

quickly and easily target the redesign of the software to run in real time with low energy. Code 
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transformations were applied in layers, starting from a high level of abstraction with algorithmic 

optimization, and moving down to very detailed and architecture- specific optimization, with data 

then instruction flow optimizations. Using this design tool on the MP3 decoder, performance was 

increased by 92% while decreasing energy consumption by 77%. 

 

2.2.3 Complete system level 

Finally, a complete system power simulator was presented in [9], SoftWatt, which models the 

CPU, memory hierarchy and a low power disk subsystem and quantifies the power behavior of 

both the application and operating system. This tool, built on top of the SimOS infrastructure, uses 

validated analytical energy models to identify the power hotspots in the system components, 

capture relative contributions of the user and kernel code to the system power profile, identify the 

power-hungry operating system services and characterize the variance in kernel power profile 

with respect to workload. 

Experiments were held using different Spec JVM98 benchmarks together with the Java 

Virtual Machine (JVM) runtime system executing on IRIX 5.3. The performance and power 

profiles are given for different hardware components such as the processor datapath, L1 and L2 

I/D caches, memory and disk.  

The result of this characterization study can be summarized as follow: (1) From a system 

perspective, the disk is the single largest consumer of power accounting for 34% of the system 

power. The adoption of the disk with low-power features shifts this power hotspot to the clock 

distribution and generation network and the on-chip first level instruction cache. The setting of 

the disk spin down threshold is critical in the shifting of this hotspot. Further, for single-issue 

processor configurations, we find that the memory subsystem has a higher average power than the 

processor core. (2) Among the four different software modes, the user mode consumes the 

maximum power. Among the other modes, the kernel synchronization operations are expensive in 

terms of their power consumption. However, their contribution to overall system energy is small 

due to the infrequent synchronization operations when executing the Spec JVM98 benchmarks. 

Though the kernel mode has the least power consumption overall, due to the frequent use of 

kernel services, it accounts for 15% of the energy consumed in the processor and memory 

hierarchy. Thus, accounting for the energy consumption of the kernel code is critical for 

estimating the overall energy budget. (3) The per-invocation of the kernel services is fairly 

constant across different applications. Thus, it is possible to estimate the energy consumed by 

kernel code with an error margin of about 10% without detailed energy simulation. (4) Whenever 

the operating system does not have any process to run, it schedules the idle-process. Though this 
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has no performance implications, over 5% of the system energy is consumed during this period. 

This energy consumption can be reduced by transitioning the CPU and the memory-subsystem to 

a low-power mode or by even halting the processor, instead of executing the idle-process. 

 

3  Dynamic Power Management (DPM) 

Dynamic power reduction techniques use runtime behavior to reduce power when systems are 

serving light workloads or are idle. DPM can be achieved in different ways; for example, 

dynamic voltage scaling (DVS) changes processor supply voltage at runtime as a method of 

power management [10-13]. DPM can also be used for shutting down unused I/O devices [15,16], 

or unused nodes of server clusters [17]. 

Three Dynamic Power Management implementation levels will be discussed in this 

section. Subsection 3.1 discusses DPM techniques applied at the CPU- level, using DVS. In 

subsection 3.2, a more general approach uses DPM at the system-level to save energy of all 

system components (memory, hard drive, I/O devices, display…). Finally, subsection 3.3 

generalizes DPM techniques to be used on multiple systems, like a server cluster, where more 

than one system collaborates to save overall power. 

 

3.1 CPU-level DPM: Dynamic Voltage Scaling (DVS) 

A new metric for CPU energy performance, MIPJ or millions-of-instructions-per-joule, was 

introduced in [10]. Reducing the clock speed causes a linear reduction in energy consumption, but 

a similar reduction in MIPS. The two effects cancel. MIPJ is unchanged by changes in clock 

speed. However, a reduced clock speed creates the opportunity for quadratic energy savings; as 

the clock speed is reduced by n, energy per cycle can be reduced by n2 by reducing voltage. In 

order to achieve an increase in MIPJ, the energy savings must be greater than the amount by 

which the clock rate is reduced. 

DVS allows a processor to dynamically changes speed and voltage at run time, thereby 

saving energy by spreading run cycles into idle time. Because of the non-linear relationship 

between CPU speed and power consumption, it is better to spread work out by reducing cycle 

time and voltage than to run the CPU at full speed for short burst and then idle. Knowing when to 

use full power and when not requires the cooperation of the operating system scheduler. 
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3.1.1 Interval-based scheduler 

In [10,11] interval based voltage scheduler has been proposed, which divides time into uniform-

length intervals and analyses system utilization of the previous intervals to determine the voltage 

of the next interval accordingly.  

In [11], some complicated algorithms estimate the future workload based on two 

parameters: run_percent and excess_cycles. run_percent is the fraction of cycles where the CPU 

is active in an interval. excess_cycles is the cycles left over from the previous interval spilled over 

into later intervals when speed is not fast enough to complete and interval’s work. Seven dynamic 

speed-setting policies were explained, discussed and compared: (1) PAST: a bounded-delay 

limited-past algorithm that uses the recent past as a predictor of the future. (2) FLAT: Weak on 

prediction, this policy simply try to smooth speed to a global average. (3) LONG_SHORT: it’s a 

more predictive policy that attempts to find a golden mean between local behavior and a more 

long-term average. (4) AGED_AVERAGES: this policy employs an exponential-smoothing 

method, attempting to predict via a weighted average: one which geometrically reduces the 

weight given to each previous interval as we go back in time. (5) CYCLE: a more sophisticated 

prediction algorithm. It tries to take advantage of some previous run_percent values that looks 

quite cyclical, to predict. (6) PATTERN: a generalized policy from CYCLE. It attempts to 

identify the most recent run_percent values as repeating a pattern seen earlier in the trace. (7) 

PEAK: a more specialized version of PATTERN. It uses heuristics based on the expectation of 

narrow peaks. It expects rising run_percents to fall symmetrically back down and falling 

run_percents to continue falling. 

Surprisingly, the simplest policy, FLAT, is optimal for low delay values, while 

LONG_SHORT, which is scarcely more complex, is optimal for the higher delay values. Of the 

most sophisticated predicting algorithms, PEAK does best, coming close to FLAT and 

LONG_SHORT in the medium-delay range. AGED_AVERAGE, CYCLE, and PATTERN were 

all disappointing. From this paper [11], we found that several of the predictive algorithms 

performed poorly. We might then conclude that simple algorithms based on rational smoothing 

rather than “smart” predicting may be most effective. Nevertheless, further possibilities for 

prediction remain to be tried, like policies that might sort past information by process-type, or 

policies where applications could provide the system with useful information.  

In [10], trace driven simulation was used to compare three classes of schedules: (1) an 

unbounded-delay perfect-future algorithm (OPT) that spreads computation over the whole trace 

period to eliminate all idle time (regardless of deadlines), (2) a bounded-delay limited-future 

algorithm (FUTURE) that uses a limited future look ahead to determine the minimum clock rate, 
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and (3) a bounded-delay limited-past algorithm (PAST) that uses the recent past as a predictor of 

the future. A PAST scheduler with a 50 ms window shows power savings of up to 50% for 

conservative circuit design assumptions (e.g., 3.3 V), and up to 70% for more aggressive 

assumptions (2.2 V). These savings are in addition to the obvious savings that come from 

stopping the processor in the idle loop, and powering off the machine all together after extended 

idle periods. The energy savings depends on the interval between speed adjustments. If it is 

adjusted at too fine a grain, then less power is saved because CPU usage is bursty. If it is adjusted 

at too coarse a grain, then the excess cycles built up during a slow interval will adversely affect 

interactive response. Interestingly, having too low a minimum speed results in less efficient 

schedules because there is more of a tendency to have excess cycles and therefore the need to 

speed up to catch up. 

  

3.1.2 Schedulers for  real-time systems 

Interval based scheduling is simple and easy to implement, but it often incorrectly predicts future 

workloads and degrades the quality of service. In non-real-time systems, excess cycles left over 

from the previous interval might be spilled over into later intervals when speed is not fast enough 

to complete an interval’s work. In a real-time system, tasks are specified by the task start time, the 

computational resources required and the task deadline. The voltage-clock scaling must be carried 

out under the constraint that no deadline is missed. Optimal voltage is schedule is defined to be 

one for which all tasks complete on or before deadlines and the total energy consumed is 

minimized. 

Scheduling algorithms for real time systems that minimizes energy consumption while all 

tasks are guaranteed to complete on or before deadlines were proposed in [12]. This technique is 

based on the assumption that the timing parameters of each job are known off-line. Two 

algorithms are given in the paper. The first one takes O(N2) time (where N is the number of jobs) 

to find the minimum constant speed needed to complete each job, since constant voltage tends to 

result in a low power consumption. This minimum constant speed is computed on some intervals, 

after determining some parameters like scheduling points, earliest and latest time, job intensity, 

busy interval and essential interval. The second algorithm, with O(N3) time complexity, build on 

the first one and give two results. First, the minimum constant voltage (or speed) needed to 

complete a set of jobs is obtained. Secondly, a voltage schedule is produced. This algorithm 

determines the critical intervals. The set of critical intervals and their associated speeds form the 

voltage schedule. This voltage schedule always saves more energy than the one that applies the 
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minimum constant speed when the processor is busy while shuts down the processor when it is 

idle. 

This approach to construct a low-energy voltage schedule is a greedy approach since it 

strives to find the minimum constant speed during any critical interval. It guarantees to result the 

minimum peak power consumption. However this algorithm may not always produce the 

minimum-energy schedule. The experimental results obtained from both randomly generated and 

real-world real-time systems have shown that this voltage schedule algorithm consistently leads 

to more energy than existing approaches. Furthermore, these algorithms do not limit to only 

periodic tasks, and can be optimized to find an optimal voltage schedule 

 In [13], two DVS algorithms on MPEG decoding were proposed. The first algorithm is 

DVS-DM (DVS with delay and drop rate minimizing algorithm), which is a kind of interval based 

DVS in a sense that it schedules voltage based on previous workload. This algorithm tries to scale 

the supply voltage according to the delay value and the drop rate. The second algorithm is DVS-

PD (DVS with decoding time prediction), which determines the voltage not only by previous 

workload but also by predicted MPEG decoding time. The prediction, in this case, is based on 

frame size and frame type. 

Four MPEG decoders with six sample streams were compared and it was found that 

DVS-PD shows the best performance with respect to energy consumption and DVS-DM is 

slightly better that the conventional shutdown algorithm. Outstanding energy saving with DVS-

PD is due to higher prediction accuracy of future workload than other approaches. It’s also found 

that energy saving is closely related with average decoding time and fluctuation. With DVS-DM, 

high fluctuation makes it difficult to predict future workload based on the previous workload only 

and it results in low efficiency. On the contrary, it’s found that that DVS-PD is not much affected 

by the fluctuation. Instead, performance of DVS-PD in terms of energy consumption depends on 

the error rate of the predictor, which implies that if decoding time is predicted more accurately, 

DVS algorithm can be more efficient. 

 

3.2 System-level DPM 

To effectively optimize system energy, it is necessary to consider all of the critical components: 

there is little benefit in optimizing the microprocessor core if other required elements dominate 

the energy consumption.  

The design of the low-power microprocessor system introduced in [14] includes the 

microprocessor core, data cache, processor bus, and external SRAM. To reduce the energy 

consumption of the memory system, a highly optimized SRAM design was used, which is 32 
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data-bits wide, requiring only one device be activated for each access. To alleviate the high pin 

count problem, data address is multiplexed onto the same bit-lines as the data words. 

 In [15], system-level power management was studied to save power of subsystems or 

devices. Examples of devices include I/O controllers, hard disk drives, network interface cards, 

and displays. Shutting down hard disks and displays is the most widely adopted system-level 

power management on PCs. [15] discusses the use of DPM techniques specifically for shutting 

down unused I/O devices. But, changing power states has overhead. Consequently, a device 

should sleep only if the saved energy justifies the overhead.  

Power management policies can be classified into three categories based on the methods 

to predict whether a device can sleep long enough: (1) Time-out policies: assume that after a 

device is idle for a certain time-out value, it will remain idle for at least Tbe (break-even time, the 

minimum length of an idle period to save power). This category includes (i) fixed-timeout, (ii) 

adaptive time-out (ATO) and (iii) device-dependent time-out policies (DDT). An obvious 

drawback is the energy wasted during this time-out period. (2) Predictive policies: predict the 

length of an ideal period before it starts, eliminating the time-out period. If an idle period is 

predicted to be longer than the break-even time, the device sleeps right after it’s idle. This 

category includes (i) the L-shape, (ii) the adaptive learning tree (LT) and (iii) the exponential 

average policies (EA). (3) Stochastic policies: model the arrival requests and device power-state 

changes as stochastic processes, such as Markov processes. This category includes (i) Discrete-

time Markov processes (DM), (ii) Time-index semi-Markov models (SM) and (iii) non-stationary 

requests (NS). 

The policies, mentioned above, were implemented using filter driver, a device driver 

inserted between the operating system kernel and another device driver. The filter driver 

intercepts communications between the operating system and the other driver and can pass, add, 

delete or change the exchanged messages.  

Each policy was graded by six criteria: power, number of shutdowns, shutdown accuracy, 

interactive performance, memory requirements, and computation requirements. No policy was 

found to have best grades for all criteria. If a policy aggressively saves power (such as SM), it’s 

likely to issue more shutdown commands and degrade performance. On the other hand, a policy 

can be conservative in power saving and issue fewer power shutdown. While performance and 

accuracy improve, these policies consume more power. Finally, the resource requirements are 

also important. The NS policy has excellent power savings but requires substantial amount of 

memory.  
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In [16], an OS-directed power management technique was proposed in order to improve 

the energy efficiency of sensor nodes using DPM. The basic idea is to shut down devices (CPU, 

memory, sensor, radio…) when not needed and wakes them up when necessary. A power-aware 

sensor node model essentially describes the power consumption in different levels of node sleep 

states. Every component in the node can have different power modes, but also has latency 

overhead associated with transitioning to that mode. Therefore each node sleep mode is 

characterized by power consumption and latency overhead. In general a deeper sleep state 

consumes less power and has a longer wake-up time. 

 

3.3 Cluster System-level DPM 

Dynamic Power Management was also used in server clusters, [17], in order to reduce the energy 

consumption of the whole cluster by coordinating and distributing the work between all available 

nodes. 

Five policies for reducing the energy consumption of server clusters with varying degrees 

of implementation complexity were presented. The first policy, Independent Voltage Scaling 

(IVS), simply uses voltage scaled processors. Each node independently manages its own power 

consumption. The second policy also uses DVS but in a coordinated manner between nodes to 

reduce cluster power consumption. It’s called Coordinated Voltage Scaling (CVS). The third 

policy, called vary-on/vary-off (VOVO), turns off server nodes so that only the minimum number 

of servers required to support the workload are kept alive. Nodes are brought online as and when 

required. The fourth policy, called Combined Policy, combines IVS and VOVO while the fifth 

uses a combination of CVS and VOVO and is called Coordinated Policy. 

These policies were evaluated in terms of both their response time and energy savings. 

The result of the simulation was that IVS, the simplest of all policies in terms of implementation 

complexity, offers energy savings ranging from 20% to 29%. CVS offers slightly better savings 

than IVS, but this benefit is probably not sufficient to justify the increased implementation 

complexity. The energy savings afforded by VOVO are workload dependent. For the fluctuating 

workloads, VOVO saves more energy than IVS. However for more stable workload, IVS saves 

more energy than VOVO. Combining DVS with VOVO offers the most energy savings with 

VOVO-IVS saving more energy then either DVS or VOVO in isolation. VOVO-CVS saves the 

most energy at the expense of a more complicated implementation. Compared to a cluster that is 

not power managed, these combined policies save between 33% and 50% of the cluster energy. 

All five policies can be engineered to keep server response times within acceptable norms. 
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4  Conclusion 

The need for robust power-performance modeling and optimization at all system levels will 

continue to grow with tomorrow’s workload and performance requirements for both high-end and 

low-end systems. Such models, providing design-time or run-time optimizations or maybe both, 

will enable designers to make the right choices in defining the future generation of energy-

efficient systems. 

The successful design and evaluation of power optimization techniques to address this 

vital issue is invariably tied to the availability of a broad and accurate set of simulation tools. 

Existing power simulators described in this paper (except for [9]), are mainly targeted for 

particular hardware components such as CPU or memory systems and do not capture the 

interaction between different system components. For future works it might be useful to develop 

a complete system power simulator that models all the system components including I/O devices 

and the interaction between them, and quantifies the power behavior of both the application and 

operating system. This simulator should be modular and flexible in a sense that additional 

modules are accepted and existing one can be replaced or modified. In addition to that, the ability 

to support dynamic power management techniques like DVS, will give the simulator a more 

global usability developing or studying any power management technique.  
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