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1. Research overview 
 

Energy efficiency is the chief concern in sensor networks as they have limited power and it often 

requires tradeoffs with throughput and latency when designing a medium access control (MAC) 

protocol.  The goal of this research is to maximize energy savings based on sleep mode operation 

and Transmit Power Control (TPC) to save power in Mote-based sensor networks.  Two key 

objectives are (i) to review and evaluate existing MAC protocols developed for Mote such as 

CSMA MAC (default in Mote), TDMA MAC (T-MAC, Univ. Virginia), and Sensor-MAC (S-MAC, 

USC) based on IEEE 802.11 concept with sleep/wake and (ii) to develop an energy efficient 

MAC solution, called Bulk Synchronous Medium Access (BSMA).  Planned future work include 

expanding BSMA protocol based on TPC (using PA_POW register) and RSSI (received signal 

strength). 

 

2. Related Work 
 

Common methods for MAC protocols in sensor networks are random access and TDMA. 

Prominent sources for energy inefficiency at medium access control (MAC) are collisions, idle 

listening, overhearing, and control packet overhead [1]. 
�  Collisions: the packets involved and control overhead needs to be retransmitted 
�  Idle listening: the radio is in listening mode in anticipation of being solicited instead of 

being in sleep mode. 
�  Overhearing: the radio listens promiscuously on the channel receiving packets addressed 

to other nodes when it could be in sleep mode. 

                                                
1 This study was in part supported by Electronics and Telecommunications Research Institute (ETRI). 



�  Control packet overhead: the headers for the packets and acknowledgement packet, 

which is used by most MAC schemes, contribute to the overhead. 

They are quite common in random access MAC protocols proposed for ad hoc networks.  Control 

overhead is the only significant factor in TDMA-based MAC schemes, as it requires setting up 

and maintaining schedules.  TDMA works best when there is no severe variation in traffic 

intensity.  Also, packets may be delayed until the node’s turn to transmit to the receiver comes up.  

Since energy efficiency is crucial for sensor networks, the main approach is to maintain a very 

low duty cycle with less control overhead. 

 

Power save mode in IEEE 802.11 

According to IEEE 802.11 standard [10], there are two modes of operation depending on the 

existence of an AP.  They are referred to as the Distribution Coordination Function (DCF) and the 

Point Coordination Function (PCF).  The DCF uses a contention algorithm to provide access to 

all traffic based on the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) and 

delay known as InterFrame Space (IFS).  The PCF is an optional access method implemented on 

top of the DCF and provides a contention-free service coordinated by an AP.  In the PCF, the AP 

has higher access priority than all other mobile nodes, and thus, it not only sends downlink 

packets but also controls uplink packets by polling stations [9].  

Power saving in the PCF mode is simply achieved by the coordination of the AP.  Every 

mobile node switches its radio subsystem off whenever possible.  The AP periodically sends 

beacon signals to synchronize with other mobile nodes and informs them whether they are 

addressed or not using Traffic Indication Map (TIM), which is included in the beacon in the form 

of a bitmap vector.  The DCF mode of operation achieves the synchronization among the nodes in 

a distributed way2.  A beacon interval consists of actual data transmission period followed by the 

advertisement, called Ad hoc TIM (ATIM) window, and packets are buffered at the sender node 

and are directly transmitted to the receiver if its advertisement was successfully acknowledged.  

Data transmission in PS mode saves energy but it takes longer time due to the synchronization 

overhead and the TIM/ATIM window size [8].  Note that both PCF and DCF assume that every 

node is within every other’s radio transmission range and are not directly applicable in multihop 

mobile networks.   

Fig. 1 shows the activities during the ATIM window with an example mobile network of 

five nodes, S1, R1, S2, R2, and R3.  In Fig. 1(a), node S1 has a unicast packet to node R1 and 

                                                
2 Tseng et al. [13] and Huang and Lai [11] studied the clock synchronization problem but we do not discuss this issue in detail in this 
paper and assume all mobile devices operate in synchrony using one such algorithm. 



advertises it during the ATIM window.  Node S2 has a broadcast packet and advertises it during 

the same ATIM window.  Note that advertisements are made based on competition using the 

CSMA/CA principle with the backoff procedure and IFS period as specified in IEEE 802.11 

standard.  Also note that the ATIM announcement from node S1 needs acknowledgement from 

the intended receiver, for example node R1.  However, the broadcast announcement from S2 does 

not need to be acknowledged.  In this scenario, all five nodes remain awaken during the entire 

beacon interval in order to receive the unicast and/or broadcast packets.  In Fig. 1(b), node S2 

intends to send a unicast packet to R2, and thus nodes S1, R1, S2, and R2 must be awaken but node 

R3 can return to sleep immediately after the ATIM window because it does not have any packet to 

receive.  It is important to note that node R3 should remain awaken if overhearing is mandatory. 

 

 

(a) One unicast and one broadcast packet (all five nodes remain awaken during the entire beacon 
interval). (b) Two unicast packets (all nodes except node R3 should remain awaken during the 
beacon interval). 

Figure 1: PS mechanism in IEEE 802.11 (SIFS: Short IFS, DIFS: DCF IFS). 
 

Recently, the abovementioned PS mode-based power saving mechanism has been studied 

not only to investigate the tradeoff between the energy and network performance but also to apply 

it in multihop environment.  Woesner et al. evaluated the PS mechanism in one-hop ad-hoc 

scenario [8].  Since ATIM window may become wasted if only a few packets need to be 

advertised, they concentrated on discovering the optimal size of ATIM window for a given 

beacon interval.  They suggested that the ratio between ATIM window and beacon interval 

should be around ¼ and that the ATIM window size should be dynamically adjusted depending 

on network traffic while the standard states it should be a constant [8].  Krashinsky and 

Balakrishnan proposed the Bounded Slowdown (BSD) protocol that dynamically adapts the 

beacon interval based on network condition in an AP-based infrastructured wireless networks 

[14].  They showed that the BSD reduces the delay of a TCP-based application while 
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simultaneously reducing energy consumption.  Similarly, Jung and Vaidya presented the 

Dynamic Power Saving Mechanism (DPSM) that dynamically adjusts the ATIM window based 

on network traffic in a one-hop network [15]. 

 On the other hand, there have been research efforts to exploit the PS mode in multihop 

networks.  SPAN [12] is a unique approach in that it mandates a set of nodes to be in AM mode 

while the rest of the nodes stay in PS mode.  Nodes in AM mode offer the routing backbone so 

that any neighboring node can transmit to one of them without waiting for the next beacon 

interval.  Two major drawbacks of this scheme is that it degenerates to all-AM mode scenario in 

sparse networks allowing no energy savings regardless the traffic pattern and the effect of routing 

overhead is not considered by employing Geographic routing with the assumption of availability 

of location information.  Zeng and Kravets suggested a similar approach, called On-Demand 

Power Management (ODPM), in which a node switches between AM and PS mode based on 

communication events and event-induced timeout values [16].  For example, when a node 

receives a RREP packet, it is better to stay in AM for more than one beacon interval (timeout) 

hoping that there will be data packets to be delivered in the near future.  This scheme asks for the 

MAC layer software to understand the semantics of routing layer messages and a completely 

different set of timeout values must be used for a different routing algorithm.  In addition, they 

should be determined based on traffic patter, which is lacking in ODPM.  For instance, a small 

timeout value in sporadic traffic condition brings no benefit because a node already went back to 

PS mode after a small timeout when the next packet arrives.  Therefore, the MAC layer design 

should be well-tuned as well as well-combined with the underlying routing layer protocol.   

 In summary, PSM defined in IEEE 802.11, BSD and DPSM perform well in one-hop 

networks but they are not directly applicable in multihop networks.  Span and ODPM are targeted 

for multihop networks but they either do not consider the routing complexity or lack the adaptive 

capability in determining the protocol parameters, which limit their application in real scenarios.  

 

Power Aware Multi-Access protocol with Signaling (PAMAS)  

The PAMAS [17] is an energy efficient media access control protocol for ad hoc networks.  This 

protocol uses a separate signaling channel apart from the channel used for data transmission.  The 

RTS/CTS messages are transmitted using this separate channel.  

Data transmission protocol works as follows. When a node has a packet to transmit, it 

sends a RTS packet and waits for the CTS packet to be received.  If the node gets the CTS packet, 

it starts transmitting the data packets.  Otherwise, it goes into exponential backoff.  The receiving 

node waits for the data packets after transmitting the CTS packet.  If the packet does not arrive 



within a particular amount of time, it goes to the idle state.  If the packet starts arriving, the node 

transmits a busy tone over the signaling channel and receives the packet.  When the receiving 

node hears a transmission of RTS message over the signaling channel, it transmits the busy tone 

of duration equal to double that of CTS message.  Thus, the CTS message the neighbor is 

expecting will collide with the busy tone and is lost.  This is how the receiving node makes sure 

that no other transmission interrupts its data reception. 

PAMAS achieves the goal of energy efficiency by turning the nodes’ power off by 

themselves whenever they need to.  A node can do so under two situations: (i) if it has no packets 

to transmit and one of its neighbors starts transmitting to somebody else, or (ii) if one of its 

neighbors is receiving.  The node can know that one of its neighbors is transmitting by hearing 

the transmissions over the data channel.  It can also know that a neighbor is receiving a data 

packet by listening to the busy tone transmitted over the signaling channel.  But the duration for 

which the node should be powered off is decided by the probe protocol, where the node sends 

query messages (t_probe) to transmitters over the signaling channel to estimate the duration [17].  

 

Prototype Embedded Network (PEN) Protocol 

As in SPAN, the PEN protocol [18] exploits the low duty cycle of communication activities and 

powers down the radio device when it is idle.  However, unlike SPAN, nodes interact 

“asynchronously” without master nodes and thus, costly master selection procedure as well as the 

master overloading problem can be avoided.  But in order for nodes to communicate without a 

central coordinator, each node has to periodically wake up, advertises its presence by 

broadcasting beacons, and listens briefly for any communication request before powering down 

again.  A transmitting source node waits until it hears a beacon signal from the intended receiver 

or server node.  Then, it informs its intention of communication during the listening period of the 

server and starts the communication.  Fig. 2 shows those source and server activities along a time 

chart. 
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Figure 2: Source and server node activities in PEN. 

 

Route discovery and route maintenance procedures are similar to those in AODV, i.e., 

on-demand route search and routing table exchange between neighbor nodes.  Due to its 

asynchronous operation, the PEN protocol minimizes the amount of active time and thus saves 

substantial energy.  However, the PEN protocol is effective only when the rate of interaction is 

fairly low.  It is thus more suited for applications involving simple command traffic rather than 

large data traffic.   

 

Sensor-MAC (S-MAC) 

S-MAC [1] follows a random access model similar to IEEE 802.11 by having RTS-CTS-DATA-

ACK sequence.  For energy savings, it sets the radio off during the transmissions of other nodes 

as in PAMAS.  However, unlike PAMAS, it only uses in-channel signaling instead of using an 

additional control channel.  It reduces energy consumption by having each node sleep for some 

time and then wake up and listen to see if any other node wants to talk to it.  If the corresponding 

durations are half second and half second (50% duty cycle) as depicted in Fig. 3, it can achieve 

close to 50% energy savings.  Nodes do not need to synchronize among themselves because, for 

example, if node A wants to talk to node B, it just wait until B is listening assuming node A has 

information about node B’s listen/sleep schedule.  And, after they start data transmission, they do 

not follow their sleep schedules until they finish transmission.   

All nodes are free to choose their own schedules and broadcast them in a SYNC message, 

indicating when they will go to sleep.  However, it is preferable for neighboring nodes to have the 

same schedule in order not to wait and thus reduce packet latency.  For this reason, if a node 

receives a schedule from a neighbor before choosing its own schedule, it follows that schedule by 

setting its schedule to be the same.  In a multihop network, it is possible that a node receives a 

different schedule after it selects and broadcasts its own schedule.  In this case, which is expected 

to be rare, the node adopts both schedules. 



 

Figure 3: Period listen and sleep in S-MAC. (Nodes do not need to synchronize but try to do so among 
neighbors by transmitting and receiving SYNC messages containing the listen/sleep schedule.) 

 

Selection of sleep and listen duration is based on application requirements and each node 

stores a schedule table that contains the schedules of its known neighbors.  Adaptive listening is 

used to reduce latency.  When a sensing event occurs, it is desirable to reach its destination with 

minimum delay.  Hence when a node hears transmissions from its neighbors, it wakes up for a 

brief period after the transmission instead of waking up at its scheduled wake up period if it is the 

next hop.  Collisions are avoided based on RTS and CTS as in IEEE 802.11.  Energy 

consumption due to unnecessary overhearing can be avoided by having all immediate neighbors 

of sender and receiver go to sleep for the duration specified in Network Allocation Vector (NAV) 

included in RTS and CTS packets, which is also used in IEEE 802.11. 

 

Timeout-MAC (T-MAC) 

T-MAC [6] tries to improve over S-MAC (fixed duty cycle) as well as classic CSMA (no duty 

cycle) by introducing dynamic duty cycle to further reduce idle listening periods while efficiently 

handling load variations in time and location (see Fig. 4).  The main idea of the T-MAC protocol 

is to reduce idle listening by transmitting all messages in bursts and to end the active listen period 

by timing out on hearing nothing.  More specifically, an active period ends when no activation 

event has occurred during the current maximum possible active duration.  An activation event is: 

•  the  firing of a periodic frame timer; 

•  the reception of any data on the radio; 

•  the sensing of communication on the radio, e.g. during a collision; 

•  the end-of-transmission of a node's own data packet or acknowledgement; 
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•  the knowledge, acquired through overhearing prior RTS and CTS packets, that a data 

exchange of a neighbor has ended. 

 

Figure 4: Dynamic duty cycle in T-MAC. (Nodes have different duty cycle depending on their communciation 
requirements.) 

 

T-MAC also considers the early sleeping problem, which typically occurs in sensor 

networks, where most of communication traffic is unidirectional from nodes to sink.  In other 

words, a node in the region of CTS of the winner of the contention is unable to send RTS to its 

destination as in Fig. 5(a) and thus the intended destination of the node duly goes into sleep, 

which makes the transmission delayed considerably.  Two possible solutions have been suggested.  

The first solution is that the node in the CTS region sends a Future RTS (FRTS) to its destination 

after it hears CTS as shown in Fig. 5(b).  Collision of data at the original receiver is prevented by 

having the sender send a small Data-Send packet, which is equal to the size of FRTS and will 

result in collision preventing the collision of data which is sent subsequently.  This solution 

results in increase of throughput along with usage of energy.  Another solution to the problem is 

to use full buffer priority, i.e. when a node’s transmit/ routing buffers are full, it would prefer 

sending to receiving as in Fig. 5(c).  This means that when a node receives an RTS destined for it, 

it immediately sends its own RTS to another node instead of replying with a CTS.  The solution 

however becomes dangerous in a high load environment where chances of collision increase 

rapidly. 

Node B

Node C

Node A Listen

Listen

Listen

Sleep

Sleep

Sleep

Node B

Node C

Node A Listen

Listen

Listen

Sleep

Sleep

Sleep
 



 

Figure 5: Early sleeping problem and two solutions [6].  (a) Early sleeping problem. (Node D goes to sleep 
before C can send an RTS to it.)  (b) Future RTS. (FRTS keeps node D awake.)  (c) Full priority buffer (Node D takes 

priority upon receiving RTS.) 
 

Traffic-Adaptive Medium Access Protocol (TRAMA) 

While all the previous schemes are contention-based, TRAMA [4] is a schedule-based TDMA 

algorithm which offers collision-free access to the medium.  Energy efficiency is thus attained by 

avoiding unnecessary communication due to collisions and by having nodes switch to sleep state 

when there is no packets intended for those nodes.  In TRAMA, time is organized as random-

access periods and scheduled-access periods.  During the random-access periods, all nodes must 

remain awaken and exchange neighbor information to obtain consistent two-hop topology 

information (Neighborhood Protocol or NP).  Since nodes perform contention-based channel 

acquisition during this period, TRAMA is not entirely a collision-free protocol.   

 A scheduled-access period is divided into a number of transmission slots, which are used 

for collision-free data exchange as well as for schedule propagation.  A node has to announce its 

transmission schedule, based on packet rate requirement produced by the higher level application 

and the corresponding packet interval, using Schedule Exchange Protocol (SEP) before starting 

actual transmissions.  A node then pre-computes the number of transmission slots in the interval 

for which it has the highest priority among its two-hop neighbors.  Here, the priority of node ‘u’ 

at time slot ‘t’ is defined as the pseudo-random hash of the concatenation of the node’s identity 

 

  



and ‘t’.  SEP maintains consistent schedule information across neighbors and updates the 

schedules periodically. 

Since a selected node may give up its transmission slot if it does not have any packet to 

send, this slot could be used by another node.  Nodes exchange current traffic information with 

their neighbors to make effective use of transmission slots.  Adaptive Election Algorithm (AEA) 

is used to find the winner of the slot and reuse of unused slots.  At any given transmission slot, a 

node is in transmit node if it has the highest priority among its contending set and it has data 

packet to send.  It is in the receive mode if it is the intended receiver of the current transmitter.  

Otherwise, the node switches off to conserve power. 

 

On-Demand TDMA Scheduling 

Busy Tone On-demand Scheduling (BTODS) and On-Demand Scheduling (ODS) are two on-

demand TDMA MAC protocols that schedule flows of sensor traffic in non-interfering slots [3].  

The difference between the two is that BTODS uses non-interfering channels to transmit busy 

tones while ODS uses the same channel to inform the current traffic.  Since it assumes that 

packets are sent from a sensor at a deterministic, period rate and the rate changes infrequently, it 

focuses on scheduling flows instead of individual packets where a flow is defined as a MAC level 

flow where data packets are sent periodically.   

 

Figure 6: A new flow (S2 to R2) is scheduled in addition to two existing flows (S1 to R1 and S3 to 
R3) [3].   

 

 In BTODS and ODS, time is organized into advertisement period and actual data 

transmission period as in power saving mechanism of IEEE 802.11.  When a node has a new flow 

to schedule, it must advertise it during the advertisement period by sending FLOW-ADV packet 

which must be acknowledged by FLOW-ACK again as in IEEE 802.11 (ATIM packet and the 

corresponding ACK).  However, unlike IEEE 802.11, the data transmission period is slotted 

based on the pre-computed schedule agreed among the neighbors.  In this sense, these schemes 

are similar to TRAMA but they do not require nodes to maintain consistent two-hop 

 



neighborhood information, which can be a source of control overhead.  In Fig. 6, a new flow (S2 

to R2) is added.  After S2 and R2 have completed their FLOW-ADV/FLOW-ACK exchange, 

both will remain awaken until they can find an open slot in which S2 can send a packet 

and receive and ACK from R2 without interfering with existing flows.  BTODS requires 

the sender S2 to refrain from attempting to schedule and send a data packet in any slot in 

which it detects a busy signal.  In ODS, since busy tones are not used, extra periods are 

added for nodes to indicate they will be busy sending or receiving in the current slot. 

 

ZigBee (IEEE 802.15.4) 

ZigBee [19] is poised to become the global control/sensor network standard and defines the 

network, security, and application framework for an IEEE 802.15.4-based system [5], which 

covers PHY and MAC layer protocols.  The MAC layer mechanism defined in IEEE 802.15.4 is 

similar to IEEE 802.11 in that it basically supports CSMA/CA-based contention access but 

optionally provides contention-free access to the medium.  In IEEE 802.11, a super-frame 

consists of contention section (DCF) and contention-free (PCF) sections.  In IEEE 802.15.4, they 

are called Contention Access Period (CAP) and Contention Free Period (CFP), 

respectively, where Guaranteed Time Slots (GTSs) comprise the CFP as shown in Fig. 7.  Time 

synchronization is achieved by using frame beacons which are emitted at super-frame duration 

intervals and the nodes that do not have anything to send/receive need to awake only during the 

beacon resulting in very low duty cycle. 

 

 

Figure 7: A super-frame with Contention Access Period (CAP) and Contention Free Period (CFP), 
where GTSs comprise the CFP [19].   

 

 IEEE 802.15.4 provides application support for creation of two wireless network 

topologies; Star for home networking and Peer-to- Peer (P2P) for industrial and commercial 

applications.  Management of these networks is done in network layer.  Two types of devices are 

identified, Full functional device (FFD) and Reduced functional device (RFD).  In Star topology, 



Personal Area Network (PAN) coordinator that sends controls the communication by sending 

beacons periodically for device synchronization. A FFD can establish its own network by 

becoming a PAN coordinator, it also sends beacons, selects network id and allows association. It 

also has a non-beacon mode in which beacons are for association purposes only.  ZigBee 

networks are primarily intended for low duty cycle sensor networks with low power consumption, 

which comes from the ability to quickly attach information, detach, and go to deep sleep. 

 

3. BSMA (Bulk Synchronous Medium Access): MAC Protocol for 
Sensor Networks 

 

Based on the extensive survey, we found that CSMA-based MAC protocols such as IEEE 802.11, 

IEEE 802.15.4, PAMAS, S-MAC and T-MAC may be good at light load but incur a large 

overhead due to collision at moderate load.  TDMA-based protocols such as TRAMA, BTODS 

and ODS are collision-free but require a large amount of scheduling overhead.  This is the 

motivation of our research to develop BSMA that avoids energy consumption due to collisions, 

overhearing and idle listening by adopting a TDMA principle with a simple scheduling algorithm.  

A key idea is to assign time slots to sensor nodes, which is done not individually but in “bulks.”   

BMAC is a TDMA protocol, which takes advantage of spatial reuse.  Nodes need not be 

bothered about transmissions beyond two-hop environment as they neither interfere nor are 

interfered by them.  It takes a two-step approach for forming a schedule, first by identifying non-

interfering concentric rings around the sink and assigning BIGSLOTs to them.  These BIGSLOTs 

are in turn subdivided into multiple slots to avoid interference within the concentric region.  In 

other words, a set of nodes listen (and receive) in BIGSLOT 0, a second set of nodes listen (and 

receive) in BIGSLOT 1, and so on.  And, mutually exclusive sets are determined based on the 

hop count from a “token” node (sink), which periodically transmits beacons.  Beacon period is 

determined based on traffic density but in sensor network, we assume that sensing activity 

happens at a known interval.  Receiver acknowledges the received packet with ACK packet if it 

receives the packet correctly.  Once the TDMA mechanism starts, if any node has much larger 

number of children nodes than its neighbors then it can initiate transfer of some of these nodes to 

its neighbors wherever possible.  It helps in obtaining an even distribution of traffic resulting in 

longer network lifetime.   

 



 

Figure 8: BSMA mechanism. 

 

Bulk Synchronous Mechanism 

The sensor nodes and the sink once deployed have to form a topology centered at the sink.  The 

sink sends the initial beacon message, SINK_MSG packet, containing a timestamp that is 

forwarded towards the periphery by the sensor nodes.  The communication between the nodes 

before the schedules are drawn up is through random access.  Each node upon receiving the 

SINK_MSG notes the hop count and the time slot to find its own BIGSLOT period, which is the 

nearest super-frame the node can participate.  Subsequent super-frames can be computed by 

adding 3×super-frame-size.  It then increments the hop count and forwards the SINK_MSG.  If a 

node receives same hop-count from two nodes, it chooses the one with higher signal strength.  

This ensures better quality link and more tolerance to noise.  Refer Fig. 8 for details. 

In Fig. 9 nodes A and H are beyond each other’s range.  Suppose node J receives 

SINK_MSG from node H first and does not consider signal strength, it chooses node H as its 

parent.  It may receive later SINK_MSG from nodes A and C but with same hop-count.  Ideally 

node J should be child node for A or C.  Now node H may suffer from interference from node A 

and may interfere with transmissions to node A from its child nodes.  Though relocating the slots 

will solve this problem, shorter and more tolerant links are desirable.  Hence, signal strength is 

also taken into consideration while determining the parent node.  
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Figure 9: BIGSLOT allocation in BSMA. 

 

Beacon period is determined based on traffic density but in sensor network, we assume 

that sensing activity happens at a known interval.  A node waits for synchronization period during 

which it gets the SINK_MSG from the sink being forwarded by different nodes.  It selects the 

node with least number of hops to the sink as its parent node and informs the selected node by 

PARENT_SEL_MSG.  This forms stage 1 of the BSMA algorithm.  The following figure 

describes how node d in Fig. 8, which is four hops away from the sink, calculates its next 

BIGSLOT period from the hop-count and original timestamp in the SINK_MSG. 

Since we have a sink-oriented network, nodes only need to have active links from and to 

their parent node and child nodes.  Once a node receives PARENT_SEL_MSG it adds the sender 

to its list of child nodes.  Whenever the node receives SINK_MSG or PARENT_SEL_MSG it 

adds the sender to its neighbor list.  Parent node schedules the links to its child nodes during its 

assigned BIGSLOT period.  Hence, a node while scheduling can ignore links to its neighbors who 

are not its child nodes.  The child nodes that are not leaf nodes repeat the process.  The 

information gathered during the random access period regarding the neighbors is retained; it is 

useful during any future rearrangements.  

Fig. 10 shows the pseudo code for implementing BSMA protocol.  It consists of two 

stages: In stage 1, the nearest super-frame (or BIGSLOT) the node can participate as parent is 

determined.  Each node forms a schedule for its child nodes based on the neighbor information, 
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SCHEDULE_PKT heard from neighbors and PARENT_SEL_MSG messages.  Initially it finds if 

it has heard any SCHEDULE_PKT from its neighbors in the same level.  If it has then it 

schedules its child nodes in the remaining part of the BIGSLOT.  If no SCHEDULE_PKT has 

been heard, the node can choose to position its slots anywhere in its BIGSLOT period.  

Contiguous slots are desired for a parent node as it helps in reducing the costs of switching on and 

off multiple times.   It can be done by obtaining n contiguous slots in the slot table, where n is at 

the minimum number_of_childnodes*2.   

Finding such contiguous zones will not be difficult as the protocol aims at very low duty 

cycles, bandwidth available is larger than the traffic offered and the whole BIGSLOT duration is 

divided only within the two-hop environment beyond which it can be reused.   Once the node 

decides on the schedule it advertises it in its neighborhood using SCHEDULE_PKT. If it receives 

a SCHEDULE_PKT from its neighbor which conflicts with its allocation, the node with lower 

address gives up and calculates and advertises a new schedule.  It waits for acknowledgement 

from its child nodes in the form of ACK_SCHED.  If a node receives a SCHEDULE_PKT from 

its parent node it replies with ACK_SCHED, other nodes overhearing can use the information 

present to form their own schedules, which do not conflict.  If the node sending 

SCHEDULE__PKT times out, it re-advertises a few times.  Eventually if no ACK_SCHED is 

received from one or few of the nodes it adjusts the schedule to reflect the changes and sends a 

new SCHEDULE_PKT.  Once all ACK_SCHED are received, the nodes move into TDMA 

mode.  In Fig. 9 nodes E, A, C and, H are in BIGSLOT2.  Node A has F and D as child nodes and 

node C has G as its child node.  Links to and from S to nodes A and C are scheduled in 

BIGSLOT1.  Nodes A and C are responsible for sharing BIGSLOT2 among their neighbor.  The 

figure shows the slots shared by them in the BIGSLOT2 on a mutually exclusive basis using stage 

2 of BSMA.   
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Figure 10: Pseudo code for implementing BSMA protocol. 

 

Fig. 11 shows the setup phase of BSMA.  Fig. 11(a) shows the process of electing a 

node’s parent and Fig. 11(b) shows the process of electing its children nodes in the tree structure 

rooted at the sink.  Once the setup phase is completed, nodes shift to TDMA mode.  They use the 

assigned slot for their own communication.  If they experience successive collisions, they need to 

change the slot scheduling.  Monitored data is periodically sent to the sink and forms majority of 

the packets directed towards the sink.  The packets from the sink may be maintenance messages 

that are broadcast over the network and travel from sink to periphery.  Sink originating messages 

tend to form a small fraction of the total messages sent.  The Data packet can be of variable size.  

The slot size has to at minimum maximum packet size plus ACK packet size.  Every data packet 

is immediately acknowledged with an ACK packet.  Guard space between slots is present to 

tolerate some amount of clock drift before the nodes get synchronize again. 



 

(a) Setting up a node’s parent                       (b) Setting up a node’s children 

Figure 11: Setup phase of BSMA protocol. 

 

Synchronization 

Clock drift among the nodes can cause synchronization errors.  Synchronization can be achieved 

by having sink node send synchronization messages periodically at a higher power level to cover 

the whole network.  The nodes can also be synchronized when they update the clock using the 

timestamp from the parent node.  This can happen, at best, once in 3 BIGSLOT periods.  Guard 

space between individual slots can be calculated to tolerate certain amount of drift.  It can be 

calculated based on the periodicity of the synchronization messages, duty cycle and the actual 

clock drift.  

 

Handling Collisions 

Collisions can happen due to drift in clock or if a new node enters the network.  If it is due to drift 

it will be corrected when the node receives the synchronization message.  If a parent node detects 

collision either as garbled reception or not receiving an ACK for the transmitted packet.  If this 

happens for p consecutive times, it concludes that the slot suffers from collision and tries to 

relocate the slot.  The child node also stays awake beyond the schedule in its parent’s BIGSLOT 

period to facilitate the relocation of the slot.  Both update their schedules accordingly.  Since, 
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BIGSLOT is designed so that nodes have small duty cycle and that they are reused beyond two 

hops, the conflicting slot can be easily relocated.  The other nodes having the schedule of the 

nodes involved in relocating the slot need not be informed as exchanging schedules is mainly 

useful during set up of the network.  The accidental collision problem could be more remote if the 

neighboring node chose their schedules quite far from each other in their BIGSLOT period.  This 

also facilitates relocating the slot near to its existing schedule if consecutive collisions happen due 

to extraneous reasons.  Thus handling of collisions in above fashion provides more flexibility to 

the BSMA’s TDMA phase. 

 

Scalability 

The network is sink-oriented and can be replicated with multiple sinks with a separate sink-to-

sink protocol to build large-scale network.  Individual network can be large as BSMA leverages 

spatial reuse along with as structured layout.  However the nodes nearer to the sink could be 

loaded more resulting in their early demise and partitioning of network.  This can be handled by 

having a higher density of the nodes near the sink, which would prolong the overall network 

lifetime.  This also helps to develop almost a spoke pattern near the sink due to lesser node degree 

for nodes near the sink.  The disadvantage being more nodes is needed.  However, the network is 

useful only if the nodes have a path to the sink.  Otherwise even if the nodes at the periphery 

survive the resulting network partition due to demise of nodes near the sink will render the 

network useless.  The cost of few more nodes near the sink would not be considerable if the 

increase in overall network lifetime is taken into consideration.  Since we are looking at very low 

duty cycles, unavailability of timeslots during TDMA phase will not be a concern.  Once the 

TDMA mechanism starts, if any node has much larger number of children nodes than its 

neighbors then it can initiate transfer of some of these nodes to its neighbors wherever possible.   

It helps in obtaining an even distribution of traffic resulting in longer network lifetime.   

 

Addressing Scheme and Routing 

Since sink-oriented networks are considered the flow of messages is predominantly upstream 

(towards the sink) or downstream (towards the periphery) and does not require a very general 

routing scheme.  The Sink node can allocate the addresses.  This helps the sink to locally get a 

rough topology of the network.  Multi-casting can be done efficiently.  The sink divides the 

address space among its child nodes.  The child node takes up the first address in the subdivision 

and last address is used to refer to the group.  The child node in-turn divides the remaining among 

its child nodes.  Hence, if the sink wants to send a message only to a branch along a child node, it 



can do so by selecting the address of that subdivision.  If a provision is made to inform the sink of 

further divisions, it can obtain a more detailed picture of the network.  More fine multi-casting 

can be achieved. Intermediate nodes in the tree network can multi-cast based on their 

subdivisions.  This kind of distribution is decentralized.  The sink node distributes the address 

space among its neighbors.  The nodes allocate addresses to the nodes further downstream. Since 

the address space is quite large there should be deficiency at any node.  Another method is that 

the nodes use their device numbers during the formation of the network.  The nodes, including the 

sink, then distribute the address space proportional to the number of nodes in each branch.  The 

sink addresses can be universally known, since there is only one sink in each group.  Nodes could 

embed the branch density as part of their first message.  The sink may be informed about the 

allocation if it needs to have a picture of the whole topology. 

 

4. Tiny OS Environment 
 

BSMA is implemented on Motes using TinyOS operating system environment [20].  TinyOS 

provides a well-defined programming model with focus on modularity, efficiency and 

concurrency.  Modularity is based on component model where each component implements a 

specific function.  The key advantages are reusability and simplicity of design.  Each component 

specifically declares in the interface (.comp file); 

• The commands(services) it provides to the other components 

• The commands it uses which are provided by other components 

• The events handled 

• The events signaled 

 

The functionality is implemented in the .c file.  Thus a clear separation of the implementation 

and interface is maintained providing flexibility to change the implementation as long as the 

interface is not changed.  Modular design also enables faster development.  Each component has 

its own Frame where the memory used is declared and a set of tasks.  Since frames are statically 

allocated it gives the memory requirements of a component at compile time avoiding overhead 

associated with dynamic memory allocation.  Tasks are primary unit of computation and in the 

two-level structure they can be pre-empted by events.  Tasks run to completion unless pre-

empted.  They can call lower level commands, signal higher-level events and schedule other tasks 

in the component. Tasks simulate concurrency using events.  Commands are non-blocking calls 



to lower level components.  They deposit the request parameters in component’s frame and post a 

task for execution.  They cannot signal events, this is done to avoid cycles.  Event handlers deal 

with hardware events either directly or indirectly.  They deposit the information in the frame and 

can post tasks, signal higher level events and call lower level commands. 

 The components are then wired together.  Thus all the applications and OS components 

compile into a single executable.  This is done for efficiency and to obtain a small footprint 

required for embedded devices.  The wiring is done by connecting the interfaces by macros, i.e. 

one interface command is #defined as another.  The wiring of the components is explicitly 

defined in .desc file.  Thus we have the component definition in .comp file, the implementation in 

.c file and wiring information in .desc file.  The whole wiring structure can be represented as a 

graph.  Component graph below shows how components can be wired to form a single 

executable. 

 

 

Figure 12: Component graph of TinyOS [21]. 

 

5. System Model 
 

Sensor networks considered are multi-hop with following assumptions 
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�  Network consists of many sensors and more than sinks. Sinks have superior power and 

processing availability. 
�  Time synchronization is achieved by beacons broadcast by sink or by nodes 

synchronizing with their parent nodes. 

Nodes are organized rooted at a sink in a tree fashion.  Tree is built by propagating an 

initialization message from the sink toward periphery.  Hop-count is updated as the message 

propagates towards periphery.  Nodes associate themselves as child nodes with the node from 

which they receive the message with highest signal strength with the least hop count from the 

sink. 

 Mote system has the following characteristics [7]. 
�  MICA2 series hardware: MPR400 (916 MHz), MPR410 (433 MHz), and MPR420 (315 

MHz) 
�  MICA2 utilizes a powerful Atmega128L microcontroller and a frequency tunable radio 

with extended range 
�  MICA2 radio  

o Consumes 8mA and 8~12mA in full operation but consumes 2uA in sleep mode 

o Can be adjusted for a range of output power levels via register called PA_POW: 

5.3~26.7mA (-20~10dBm) (MPR 410/420) 

o Also provides a measurement of the received signal strength (RSSI) and is 

available to the software via ADC channel 0. 

 

6. BSMA Protocol Interface 
 

BSMA is a MAC and limited routing layer solution.  Hence it provides commands to applications 

to send data and utilizes the services provided by the physical layer.  BSMA is a two-stage 

protocol.  In the first stage it builds up the information required for TDMA scheduling using 

random access and then transitions into TDMA.  BSMA is implemented as a component.  It 

provides an interface that can be used by applications to send and receive data.  BSMA uses the 

commands provided by components PhyControl, RadioState, CarrierSense, PhyComm, Random, 

Clock, TimeStamp and PowerManagement.  Here the Physical layer used is the one provided by 

ISI as part of the SMAC protocol [2].  BSMA replaces SMAC as the medium access protocol 

while retaining the same physical layer.  Fig. 2 shows the BSMA interface followed by the 

discussion on each of the interface functions. 



 
interface BSMAComm 
{ 
   // Broadcast a message 
   command result_t broadcastMsg(void* msg, uint8_t length); 
   event result_t  broadcastDone(void* msg); 
 
   // The following are unicast messages 
 
   command result_t unicastMsgAddr(void* msg, uint8_t length, uint16_t toAddr ); // 
Address is specified and direction is derived 
 
   command result_t unicastMsgDirec(void* msg, uint8_t length, uint16_t direction ); // 
just upstream or downstream is mentioned 
// upstream for messages to sink and downstream for messages to child tree 
 
   event result_t unicastAddrDone(void* msg); 
   event result_t unicastDirecDone(void* msg); 
 
   // msgClear clears all pending messages in queue 
   command result_t msgClear (); 
 
   // signal received message 
   event void* recvDone(void* msg); 

} 
Figure 2: BSMA interface. 

 

Commands 

Commands included in the BSMA interface are used by higher level components to obtain 

services of BSMA.  The main services provided by BSMA are 
�  broadcastMsg: This command is used to send broadcast message. The message is sent 

both upstream and downstream 
�  unicastMsgAddr: This command is used to send unicast message if the application 

knows the address of the destination node. At present it can be either the parent node or 

one of the child node. 
�  unicastMsgDirec: This is most commonly used command and it specifies whether the 

message is for sink or for distribution among the child nodes. 

 

Signals 

Signals included in the BSMA interface are as follows. 
�  recvDone: This signals higher level component that a message was received 
�  broadcastDone: This signals higher level component that the request to broadcast has 

been acted upon. The result is provided in result_t. 
�  unicastAddrDone: This signals higher level component that the request to unicast based 

on address has been acted upon. The result is provided in result_t. 



�  unicastDirecDone: This signals higher level component that the request to unicast based 

on direction has been acted upon. The result is provided in result_t. 

 

7. BSMA Protocol Implementation 
 

This implements the actual handling of the data at MAC and limited routing. The messages can 

be either sent upstream or downstream.  From the functionality perspective it can be divided into 

timer handling, event handling, and dispatchers. 

 

Timer handling 

BSMA component uses the event generated by Clock component.  The event is delivered 

periodically and all timers are updated upon reception of this event.  The function called is event 

void Clock.fire().  The individual timers are actually variables initialized to their timeout value.  

Upon entering this routing the timers are decremented and when they reach zero the respective 

action is taken.  The clock can be signaled to higher components if needed using signal. 

 

Event handlers 

Clock is one type of event handler. Other important one is to handle reception of message and 

status message of transmissions.  event void* PhyComm.rxPktDone(void* packet, char error) 

is signaled when the physical layer completes reception of a message.  If the message is received 

successfully then the type of the packet is determined and respective handler is called 
�  Sink Message handler handleSINK_MSG(packet): This function is results in vertical 

spatial reuse by the dividing the whole network into three BIGSLOT periods. It the uses 

the timestamp present and the hop count to derive the BIGSLOT number of the node. It 

then increments the hop count and rebroadcasts the message. 
�  Data Packet handler handleDATA_PKT(packet): Processing of data packet and passing 

it on to the application module. 
�  Parent Select Message handler handlePARENT_SEL_MSG(packet): Upon receiving 

the PARENT_SEL_MSG the node adds the sending node as one of the child nodes. This 

information is needed to generate the TDMA Schedule. 
�  Schedule Packet handler handleSCHEDULE_PKT(packet): On receiving the 

SCHEDULE_PKT if the node is the intended child node it updates the information about 

which slot is allocated to it by the parent node. Else it node whether it is from a node in 



same BIGSLOT as it is, if so this information is vital to determining if any conflicts 

result during drawing up the schedule for its child nodes. 
�  Acknowledgement Packet handler handleACK(packet): Handling of the 

acknowledgement for the data send. If ACK is lost then node updates the information 

required to determine if the link has gone bad.  
�  Ack Schedule Packet handler handleACK_SCHED(packet): All child nodes 

acknowledge the receipt of SCHEDULE_PKT, if this is not received the parent node may 

assume that the child node has a problem. 
�  Unknown Message type handler handleErrPkt():  error handling. 

 

Dispatchers 

They are responsible for generation of different kinds of messages. 
�  sendSINK_MSG: This function is initiated by the sink node only. The other nodes 

forward it when they receive the sink message. Before forwarding the hop count is 

incremented. 
�  sendPARENT_SEL_MSG: Once the timeout for collecting sink messages is over, the 

node selects the node closest to the sink, determined by the hop count field, as the parent 

node. This information is conveyed to the node by means of a PARENT_SEL_MSG. 
�  sendSCHEDULE_PKT: Once the timeout for obtaining the PARENT_SEL_MSG is 

over, the parent node computes the schedule for the child nodes and broadcast them in the 

SCHEDULE_PKT. If it receives conflicting selections from the neighboring node then 

the node with the lower address will recomputed the schedule and rebroadcasts it. Since 

the BIGSLOT period is quite big and can be reused two hops away, schedules of the 

neighboring nodes can be accommodated. The Schedules overheard are also maintained 

if possible to help recovery procedures and also to compute the schedule in a non-

conflicting manner. 
�  sendACK_SCHED:  Upon reception of SCHEDULE_PKT the child nodes sends an 

ACK_SCHED to the parent node. Sending is randomized within a small duration so that  

all the child nodes don’t send at the same time. 
�  sendACK: All Data packets are acknowledged. 

 

Local information 

Another important part of BSMA implementation is how to maintain local information.  The local 

information such as states, schedule, and neighbor is maintained in the following data structures.  



First, states provide vital information in both random access and TDMA periods.  The 

different states possible are maintained as an enumeration. The present state is maintained in a 

state variable of the enumeration type.  The state transition diagram provides the transitions 

between various states.  Information regarding whether in Random Access or TDMA phase is 

also maintained.  Once the building of schedules is done the nodes transition into TDMA phase.  

In this the operating state machines are that of the sender and the receiver.   

Second, schedule is maintained in Schedule schedTab[BSMA_MAX_NUM_SCHED], 

where  Schedule is  

 

typedef struct { 

 uint16_t NodeAddr; 

 uint8_t BSNum; 

 uint16_t BSOffset; 

 unit8_t NumSlots; 

}__attribut__((packed)) Schedule; 

 

The availability of the slots in the BIGSLOT is maintained using the following data 

 

  // BigSlot availability 

   typedef Struct { 

   uint16_t startSlot; 

   unit8_t numSlots; 

   uint8_t sendRecv; // I guess not needed, just availability info 

   } slotUsage; 

    

   uint8_t myBS; 

   uint8_t parentBS; 

   uint8_t childBS; 

    

   slotUsage usedSlots [BSMA_MAX_NUM_NEIGHB]; 

 

Hence finer details about the actual Schedule of the neighbors need not be maintained.  Just the 

number of slots used by them in the BIGSLOT period and their location suffices.  The 

information derived from sink message is used to determine the BIGSLOT number used by the 

node and is stored in myBS, the parent BIGSLOT number and child BIGSLOT number is stored 

in parentBS, childBS respectively.   

Thirdly, neighbor information is derived from the Schedule packets broadcast by the 

nodes.  The information in them is processed and stored in the following data structures. 

 

slotUsage usedSlots [BSMA_MAX_NUM_NEIGHB]; 



slotUsage UsedSlotsInParentBS [BSMA_MAX_NUM_NEIGHB]; 

However, memory permitting, more detailed information can be stored in  

uint8_t numNeighb;  // number of known neighbors 

NeighbList neighbList[BSMA_MAX_NUM_NEIGHB]; // neighbor list 

typedef struct { 

      uint16_t neighbAddr; 

      uint8_t relation; 

      Schedule sched [15]; 

      unit8_t numActiveSchedules; 

      uint8_t active; //flag indicating the node is active recently 

   } NeighbList; 

 

8. Source Structure of BSMA 
 

BSMA is implemented using SMAC implementation [1] by ISI, which is again based on TinyOS 

implementation.  It consists of three files: BSMAMsg.h, BSMAComm.nc, and BSMAM.nc.  

BAMAMsg.h contains the data structures used in BSMAM.c.  BSMAComm.nc contains the 

interface provided by the BSMA component (see Fig. 2).  BSMAM.nc implements the BSMA 

protocol. 

 

BSMAMsg.h 

 
// MAC header to be included by upper layer headers -- nested headers 
typedef struct { 
} __attribute__((packed)) MACHeader; 
 
typedef struct { 
}__attribut__((packed)) Schedule; 
 
//Control packet 
typedef struct { 
} __attribute__((packed))  MACCtrlPkt; 
 
typedef struct { 
} RadioTime; 

 
BSMAM.nc 

module BSMAM 
{ 
   provides { 
      interface StdControl as MACControl; 
      interface MACComm; 
      /* 
      interface MACTest; 



      interface MACPerformance; 
      */ 
   } 
   uses { 
      interface StdControl as PhyControl; 
      interface RadioState; 
      interface CarrierSense; 
      interface PhyComm; 
      interface Random; 
      interface ClockBSMA as Clock; 
      interface TimeStamp; 
      interface PowerManagement; 
   } 
} 
 
//Handle packet reception completion from physical layer 
event void* PhyComm.rxPktDone (void* packet, char error) {} 
 
// handle transmission complete signal from Physical layer 
event result_t PhyComm.txPktDone (void* packet) {} 
 
// Handle Clock fire event 
// The timers implemented in BSMA are dependent on this function for updation 
event void Clock.fire() {} 
 
// Calculate the shift needed to position BIGSLOT 
int findShift (unit8_t originalRegion, unit8_t nextFramePos) {} 
 
// find the BIGSLOT of the node 
void findBigSlot (MACCtrlPkt* pkt) {} 
 
// Handle receipt of sink message, determine the BIGSLOt and 
// forward it after updating the hop_count 
void handleSINK_MSG (void* pkt) {} 
 
//Hanlde PACKET_SEL_MSG, store the sender as a child node 
void handlePARENT_SEL_MSG (void* pkt) {} 
 
// Handle receipt of Data Packet 
void* handleDATA_PKT (void* pkt) {} 
 
// handle receipt of ACK 
void handleACK (void* pkt) 
 
//Upate the portion the BIGSLOT used 
void updateUsedSlots (void* pkt) {} 
 
// Handles SCHEDULE_PKT, note the slot in parent BIGSLOT 
// period available to send and received data 
void handleSCHEDULE_PKT (void* pkt) 
 
// Checkt if channel is idle 
event result_t CarrierSense.channelIdle() {} 
 
// Compute the Schedule from the information gathered through 
// PARENT_SEL_MSG and other SCHEDULE_PKT previously broadcast 



// by neighbors 
void form_schedule (slot slot_table [] ) 

 

 

9. Running BSMA 

A simple application (BSMATest.nc and BSMATestM.nc) has been designed to test the basic 

functionality of BSMA.  The default configuration is to use n motes.  And each mote sends out 10 

unicast messages.  The node with ID 1 is selected as the sink node.  In order to run the application, 

1) Compile and install by 'make mica' and 'make install mica'.  2) You can either specify node ID 

(TOS_LOCAL_ADDRESS) in system/tos.h, or simply using 'make install.x mica', where x is the 

node ID.  One of the node has to have node ID 1, which will be the sink node. 

BSMATest.nc 

implementation 
{ 
   components Main, BSMATestM, BSMA; 
 
   Main.StdControl -> BSMATestM; 
   BSMATestM.MACControl -> BSMA; 
   BSMATestM.MACComm -> BSMA; 
   BSMATestM.MACTest -> BSMA; 
   
} 

BSMATestM.nc 

module BSMATestM 
{ 
   provides interface StdControl; 
   uses { 
      interface StdControl as MACControl; 
      interface MACComm; 
       } 
} 
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