
Cleveland State University
Department of Electrical and Computer Engineering

Bulk Synchronous Medium Access (BSMA) for Mote-
based Sensor Networks

Electrical Engineering Technical Report
TR – 05 - 101

Sridhar Kalubandi and Chansu Yu

January 24, 2005

2121 Euclid Avenue, Stilwell Hall 332
Cleveland, Ohio 44115-2425

http://www.csuohio.edu/electrical_engineering/

Bulk Synchronous Medium Access (BSMA) for Mote-based
Sensor Networks1

Sridhar Kalubandi and Chansu Yu

Department of Electrical and Computer Engineering

Cleveland State University
2121 Euclid Avenue, SH 332, Cleveland, OH 44115

1. Research overview

Energy efficiency is the chief concern in sensor networks as they have limited power and it often

requires tradeoffs with throughput and latency when designing a medium access control (MAC)

protocol. The goal of this research is to maximize energy savings based on sleep mode operation

and Transmit Power Control (TPC) to save power in Mote-based sensor networks. Two key

objectives are (i) to review and evaluate existing MAC protocols developed for Mote such as

CSMA MAC (default in Mote), TDMA MAC (T-MAC, Univ. Virginia), and Sensor-MAC (S-MAC,

USC) based on IEEE 802.11 concept with sleep/wake and (ii) to develop an energy efficient

MAC solution, called Bulk Synchronous Medium Access (BSMA). Planned future work include

expanding BSMA protocol based on TPC (using PA_POW register) and RSSI (received signal

strength).

2. Related Work

Common methods for MAC protocols in sensor networks are random access and TDMA.

Prominent sources for energy inefficiency at medium access control (MAC) are collisions, idle

listening, overhearing, and control packet overhead [1].
� Collisions: the packets involved and control overhead needs to be retransmitted
� Idle listening: the radio is in listening mode in anticipation of being solicited instead of

being in sleep mode.
� Overhearing: the radio listens promiscuously on the channel receiving packets addressed

to other nodes when it could be in sleep mode.

1 This study was in part supported by Electronics and Telecommunications Research Institute (ETRI).

� Control packet overhead: the headers for the packets and acknowledgement packet,

which is used by most MAC schemes, contribute to the overhead.

They are quite common in random access MAC protocols proposed for ad hoc networks. Control

overhead is the only significant factor in TDMA-based MAC schemes, as it requires setting up

and maintaining schedules. TDMA works best when there is no severe variation in traffic

intensity. Also, packets may be delayed until the node’s turn to transmit to the receiver comes up.

Since energy efficiency is crucial for sensor networks, the main approach is to maintain a very

low duty cycle with less control overhead.

Power save mode in IEEE 802.11

According to IEEE 802.11 standard [10], there are two modes of operation depending on the

existence of an AP. They are referred to as the Distribution Coordination Function (DCF) and the

Point Coordination Function (PCF). The DCF uses a contention algorithm to provide access to

all traffic based on the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) and

delay known as InterFrame Space (IFS). The PCF is an optional access method implemented on

top of the DCF and provides a contention-free service coordinated by an AP. In the PCF, the AP

has higher access priority than all other mobile nodes, and thus, it not only sends downlink

packets but also controls uplink packets by polling stations [9].

Power saving in the PCF mode is simply achieved by the coordination of the AP. Every

mobile node switches its radio subsystem off whenever possible. The AP periodically sends

beacon signals to synchronize with other mobile nodes and informs them whether they are

addressed or not using Traffic Indication Map (TIM), which is included in the beacon in the form

of a bitmap vector. The DCF mode of operation achieves the synchronization among the nodes in

a distributed way2. A beacon interval consists of actual data transmission period followed by the

advertisement, called Ad hoc TIM (ATIM) window, and packets are buffered at the sender node

and are directly transmitted to the receiver if its advertisement was successfully acknowledged.

Data transmission in PS mode saves energy but it takes longer time due to the synchronization

overhead and the TIM/ATIM window size [8]. Note that both PCF and DCF assume that every

node is within every other’s radio transmission range and are not directly applicable in multihop

mobile networks.

Fig. 1 shows the activities during the ATIM window with an example mobile network of

five nodes, S1, R1, S2, R2, and R3. In Fig. 1(a), node S1 has a unicast packet to node R1 and

2 Tseng et al. [13] and Huang and Lai [11] studied the clock synchronization problem but we do not discuss this issue in detail in this
paper and assume all mobile devices operate in synchrony using one such algorithm.

advertises it during the ATIM window. Node S2 has a broadcast packet and advertises it during

the same ATIM window. Note that advertisements are made based on competition using the

CSMA/CA principle with the backoff procedure and IFS period as specified in IEEE 802.11

standard. Also note that the ATIM announcement from node S1 needs acknowledgement from

the intended receiver, for example node R1. However, the broadcast announcement from S2 does

not need to be acknowledged. In this scenario, all five nodes remain awaken during the entire

beacon interval in order to receive the unicast and/or broadcast packets. In Fig. 1(b), node S2

intends to send a unicast packet to R2, and thus nodes S1, R1, S2, and R2 must be awaken but node

R3 can return to sleep immediately after the ATIM window because it does not have any packet to

receive. It is important to note that node R3 should remain awaken if overhearing is mandatory.

(a) One unicast and one broadcast packet (all five nodes remain awaken during the entire beacon
interval). (b) Two unicast packets (all nodes except node R3 should remain awaken during the
beacon interval).

Figure 1: PS mechanism in IEEE 802.11 (SIFS: Short IFS, DIFS: DCF IFS).

Recently, the abovementioned PS mode-based power saving mechanism has been studied

not only to investigate the tradeoff between the energy and network performance but also to apply

it in multihop environment. Woesner et al. evaluated the PS mechanism in one-hop ad-hoc

scenario [8]. Since ATIM window may become wasted if only a few packets need to be

advertised, they concentrated on discovering the optimal size of ATIM window for a given

beacon interval. They suggested that the ratio between ATIM window and beacon interval

should be around ¼ and that the ATIM window size should be dynamically adjusted depending

on network traffic while the standard states it should be a constant [8]. Krashinsky and

Balakrishnan proposed the Bounded Slowdown (BSD) protocol that dynamically adapts the

beacon interval based on network condition in an AP-based infrastructured wireless networks

[14]. They showed that the BSD reduces the delay of a TCP-based application while

ATIM window (e.g. 50msec)

DIFS

SIFS

S1

R1

For a unicast message to R1
(Needs to be acknowledged)

ATIM

ACK

S2

ATIM

For a broadcast message
(Needs no acknowledgement)

Beacon interval (e.g. 200msec)

R2

R3

Actual data
transfers

Contention period
mandated by CSMA

All five
nodes
remain
awaken.

ATIM window (e.g. 50msec)

DIFS

SIFS

S1

R1

For a unicast message to R1
(Needs to be acknowledged)

ATIM

ACK

S2

ATIM

For a broadcast message
(Needs no acknowledgement)

Beacon interval (e.g. 200msec)

R2

R3

Actual data
transfers

Contention period
mandated by CSMA

All five
nodes
remain
awaken.

ATIM window (e.g. 50msec)

DIFS

SIFS

S1

R1

For a unicast message
(Needs to be acknowledged)

ATIM

ACK

S2

ATIM

Beacon interval (e.g. 200msec)

R2
R3

SIFS ACK

Actual data
transfers

Four
nodes
remain
awaken.

R3 sleeps.

Contention period
mandated by CSMA

ATIM window (e.g. 50msec)

DIFS

SIFS

S1

R1

For a unicast message
(Needs to be acknowledged)

ATIM

ACK

S2

ATIM

Beacon interval (e.g. 200msec)

R2
R3

SIFS ACK

Actual data
transfers

Four
nodes
remain
awaken.

R3 sleeps.

Contention period
mandated by CSMA

simultaneously reducing energy consumption. Similarly, Jung and Vaidya presented the

Dynamic Power Saving Mechanism (DPSM) that dynamically adjusts the ATIM window based

on network traffic in a one-hop network [15].

 On the other hand, there have been research efforts to exploit the PS mode in multihop

networks. SPAN [12] is a unique approach in that it mandates a set of nodes to be in AM mode

while the rest of the nodes stay in PS mode. Nodes in AM mode offer the routing backbone so

that any neighboring node can transmit to one of them without waiting for the next beacon

interval. Two major drawbacks of this scheme is that it degenerates to all-AM mode scenario in

sparse networks allowing no energy savings regardless the traffic pattern and the effect of routing

overhead is not considered by employing Geographic routing with the assumption of availability

of location information. Zeng and Kravets suggested a similar approach, called On-Demand

Power Management (ODPM), in which a node switches between AM and PS mode based on

communication events and event-induced timeout values [16]. For example, when a node

receives a RREP packet, it is better to stay in AM for more than one beacon interval (timeout)

hoping that there will be data packets to be delivered in the near future. This scheme asks for the

MAC layer software to understand the semantics of routing layer messages and a completely

different set of timeout values must be used for a different routing algorithm. In addition, they

should be determined based on traffic patter, which is lacking in ODPM. For instance, a small

timeout value in sporadic traffic condition brings no benefit because a node already went back to

PS mode after a small timeout when the next packet arrives. Therefore, the MAC layer design

should be well-tuned as well as well-combined with the underlying routing layer protocol.

 In summary, PSM defined in IEEE 802.11, BSD and DPSM perform well in one-hop

networks but they are not directly applicable in multihop networks. Span and ODPM are targeted

for multihop networks but they either do not consider the routing complexity or lack the adaptive

capability in determining the protocol parameters, which limit their application in real scenarios.

Power Aware Multi-Access protocol with Signaling (PAMAS)

The PAMAS [17] is an energy efficient media access control protocol for ad hoc networks. This

protocol uses a separate signaling channel apart from the channel used for data transmission. The

RTS/CTS messages are transmitted using this separate channel.

Data transmission protocol works as follows. When a node has a packet to transmit, it

sends a RTS packet and waits for the CTS packet to be received. If the node gets the CTS packet,

it starts transmitting the data packets. Otherwise, it goes into exponential backoff. The receiving

node waits for the data packets after transmitting the CTS packet. If the packet does not arrive

within a particular amount of time, it goes to the idle state. If the packet starts arriving, the node

transmits a busy tone over the signaling channel and receives the packet. When the receiving

node hears a transmission of RTS message over the signaling channel, it transmits the busy tone

of duration equal to double that of CTS message. Thus, the CTS message the neighbor is

expecting will collide with the busy tone and is lost. This is how the receiving node makes sure

that no other transmission interrupts its data reception.

PAMAS achieves the goal of energy efficiency by turning the nodes’ power off by

themselves whenever they need to. A node can do so under two situations: (i) if it has no packets

to transmit and one of its neighbors starts transmitting to somebody else, or (ii) if one of its

neighbors is receiving. The node can know that one of its neighbors is transmitting by hearing

the transmissions over the data channel. It can also know that a neighbor is receiving a data

packet by listening to the busy tone transmitted over the signaling channel. But the duration for

which the node should be powered off is decided by the probe protocol, where the node sends

query messages (t_probe) to transmitters over the signaling channel to estimate the duration [17].

Prototype Embedded Network (PEN) Protocol

As in SPAN, the PEN protocol [18] exploits the low duty cycle of communication activities and

powers down the radio device when it is idle. However, unlike SPAN, nodes interact

“asynchronously” without master nodes and thus, costly master selection procedure as well as the

master overloading problem can be avoided. But in order for nodes to communicate without a

central coordinator, each node has to periodically wake up, advertises its presence by

broadcasting beacons, and listens briefly for any communication request before powering down

again. A transmitting source node waits until it hears a beacon signal from the intended receiver

or server node. Then, it informs its intention of communication during the listening period of the

server and starts the communication. Fig. 2 shows those source and server activities along a time

chart.

Data ready at
a source node

Advertising beacons
from server node(s)

Data comm.
starts

Data comm.
ends

The source waits

Server
Listen

Server
Listen

Server
Listen

Figure 2: Source and server node activities in PEN.

Route discovery and route maintenance procedures are similar to those in AODV, i.e.,

on-demand route search and routing table exchange between neighbor nodes. Due to its

asynchronous operation, the PEN protocol minimizes the amount of active time and thus saves

substantial energy. However, the PEN protocol is effective only when the rate of interaction is

fairly low. It is thus more suited for applications involving simple command traffic rather than

large data traffic.

Sensor-MAC (S-MAC)

S-MAC [1] follows a random access model similar to IEEE 802.11 by having RTS-CTS-DATA-

ACK sequence. For energy savings, it sets the radio off during the transmissions of other nodes

as in PAMAS. However, unlike PAMAS, it only uses in-channel signaling instead of using an

additional control channel. It reduces energy consumption by having each node sleep for some

time and then wake up and listen to see if any other node wants to talk to it. If the corresponding

durations are half second and half second (50% duty cycle) as depicted in Fig. 3, it can achieve

close to 50% energy savings. Nodes do not need to synchronize among themselves because, for

example, if node A wants to talk to node B, it just wait until B is listening assuming node A has

information about node B’s listen/sleep schedule. And, after they start data transmission, they do

not follow their sleep schedules until they finish transmission.

All nodes are free to choose their own schedules and broadcast them in a SYNC message,

indicating when they will go to sleep. However, it is preferable for neighboring nodes to have the

same schedule in order not to wait and thus reduce packet latency. For this reason, if a node

receives a schedule from a neighbor before choosing its own schedule, it follows that schedule by

setting its schedule to be the same. In a multihop network, it is possible that a node receives a

different schedule after it selects and broadcasts its own schedule. In this case, which is expected

to be rare, the node adopts both schedules.

Figure 3: Period listen and sleep in S-MAC. (Nodes do not need to synchronize but try to do so among
neighbors by transmitting and receiving SYNC messages containing the listen/sleep schedule.)

Selection of sleep and listen duration is based on application requirements and each node

stores a schedule table that contains the schedules of its known neighbors. Adaptive listening is

used to reduce latency. When a sensing event occurs, it is desirable to reach its destination with

minimum delay. Hence when a node hears transmissions from its neighbors, it wakes up for a

brief period after the transmission instead of waking up at its scheduled wake up period if it is the

next hop. Collisions are avoided based on RTS and CTS as in IEEE 802.11. Energy

consumption due to unnecessary overhearing can be avoided by having all immediate neighbors

of sender and receiver go to sleep for the duration specified in Network Allocation Vector (NAV)

included in RTS and CTS packets, which is also used in IEEE 802.11.

Timeout-MAC (T-MAC)

T-MAC [6] tries to improve over S-MAC (fixed duty cycle) as well as classic CSMA (no duty

cycle) by introducing dynamic duty cycle to further reduce idle listening periods while efficiently

handling load variations in time and location (see Fig. 4). The main idea of the T-MAC protocol

is to reduce idle listening by transmitting all messages in bursts and to end the active listen period

by timing out on hearing nothing. More specifically, an active period ends when no activation

event has occurred during the current maximum possible active duration. An activation event is:

• the firing of a periodic frame timer;

• the reception of any data on the radio;

• the sensing of communication on the radio, e.g. during a collision;

• the end-of-transmission of a node's own data packet or acknowledgement;

Node B

Node C

Node A Listen

Listen

Listen

Sleep

Sleep

Sleep

Node B

Node C

Node A Listen

Listen

Listen

Sleep

Sleep

Sleep

• the knowledge, acquired through overhearing prior RTS and CTS packets, that a data

exchange of a neighbor has ended.

Figure 4: Dynamic duty cycle in T-MAC. (Nodes have different duty cycle depending on their communciation
requirements.)

T-MAC also considers the early sleeping problem, which typically occurs in sensor

networks, where most of communication traffic is unidirectional from nodes to sink. In other

words, a node in the region of CTS of the winner of the contention is unable to send RTS to its

destination as in Fig. 5(a) and thus the intended destination of the node duly goes into sleep,

which makes the transmission delayed considerably. Two possible solutions have been suggested.

The first solution is that the node in the CTS region sends a Future RTS (FRTS) to its destination

after it hears CTS as shown in Fig. 5(b). Collision of data at the original receiver is prevented by

having the sender send a small Data-Send packet, which is equal to the size of FRTS and will

result in collision preventing the collision of data which is sent subsequently. This solution

results in increase of throughput along with usage of energy. Another solution to the problem is

to use full buffer priority, i.e. when a node’s transmit/ routing buffers are full, it would prefer

sending to receiving as in Fig. 5(c). This means that when a node receives an RTS destined for it,

it immediately sends its own RTS to another node instead of replying with a CTS. The solution

however becomes dangerous in a high load environment where chances of collision increase

rapidly.

Node B

Node C

Node A Listen

Listen

Listen

Sleep

Sleep

Sleep

Node B

Node C

Node A Listen

Listen

Listen

Sleep

Sleep

Sleep

Figure 5: Early sleeping problem and two solutions [6]. (a) Early sleeping problem. (Node D goes to sleep
before C can send an RTS to it.) (b) Future RTS. (FRTS keeps node D awake.) (c) Full priority buffer (Node D takes

priority upon receiving RTS.)

Traffic-Adaptive Medium Access Protocol (TRAMA)

While all the previous schemes are contention-based, TRAMA [4] is a schedule-based TDMA

algorithm which offers collision-free access to the medium. Energy efficiency is thus attained by

avoiding unnecessary communication due to collisions and by having nodes switch to sleep state

when there is no packets intended for those nodes. In TRAMA, time is organized as random-

access periods and scheduled-access periods. During the random-access periods, all nodes must

remain awaken and exchange neighbor information to obtain consistent two-hop topology

information (Neighborhood Protocol or NP). Since nodes perform contention-based channel

acquisition during this period, TRAMA is not entirely a collision-free protocol.

 A scheduled-access period is divided into a number of transmission slots, which are used

for collision-free data exchange as well as for schedule propagation. A node has to announce its

transmission schedule, based on packet rate requirement produced by the higher level application

and the corresponding packet interval, using Schedule Exchange Protocol (SEP) before starting

actual transmissions. A node then pre-computes the number of transmission slots in the interval

for which it has the highest priority among its two-hop neighbors. Here, the priority of node ‘u’

at time slot ‘t’ is defined as the pseudo-random hash of the concatenation of the node’s identity

and ‘t’. SEP maintains consistent schedule information across neighbors and updates the

schedules periodically.

Since a selected node may give up its transmission slot if it does not have any packet to

send, this slot could be used by another node. Nodes exchange current traffic information with

their neighbors to make effective use of transmission slots. Adaptive Election Algorithm (AEA)

is used to find the winner of the slot and reuse of unused slots. At any given transmission slot, a

node is in transmit node if it has the highest priority among its contending set and it has data

packet to send. It is in the receive mode if it is the intended receiver of the current transmitter.

Otherwise, the node switches off to conserve power.

On-Demand TDMA Scheduling

Busy Tone On-demand Scheduling (BTODS) and On-Demand Scheduling (ODS) are two on-

demand TDMA MAC protocols that schedule flows of sensor traffic in non-interfering slots [3].

The difference between the two is that BTODS uses non-interfering channels to transmit busy

tones while ODS uses the same channel to inform the current traffic. Since it assumes that

packets are sent from a sensor at a deterministic, period rate and the rate changes infrequently, it

focuses on scheduling flows instead of individual packets where a flow is defined as a MAC level

flow where data packets are sent periodically.

Figure 6: A new flow (S2 to R2) is scheduled in addition to two existing flows (S1 to R1 and S3 to
R3) [3].

 In BTODS and ODS, time is organized into advertisement period and actual data

transmission period as in power saving mechanism of IEEE 802.11. When a node has a new flow

to schedule, it must advertise it during the advertisement period by sending FLOW-ADV packet

which must be acknowledged by FLOW-ACK again as in IEEE 802.11 (ATIM packet and the

corresponding ACK). However, unlike IEEE 802.11, the data transmission period is slotted

based on the pre-computed schedule agreed among the neighbors. In this sense, these schemes

are similar to TRAMA but they do not require nodes to maintain consistent two-hop

neighborhood information, which can be a source of control overhead. In Fig. 6, a new flow (S2

to R2) is added. After S2 and R2 have completed their FLOW-ADV/FLOW-ACK exchange,

both will remain awaken until they can find an open slot in which S2 can send a packet

and receive and ACK from R2 without interfering with existing flows. BTODS requires

the sender S2 to refrain from attempting to schedule and send a data packet in any slot in

which it detects a busy signal. In ODS, since busy tones are not used, extra periods are

added for nodes to indicate they will be busy sending or receiving in the current slot.

ZigBee (IEEE 802.15.4)

ZigBee [19] is poised to become the global control/sensor network standard and defines the

network, security, and application framework for an IEEE 802.15.4-based system [5], which

covers PHY and MAC layer protocols. The MAC layer mechanism defined in IEEE 802.15.4 is

similar to IEEE 802.11 in that it basically supports CSMA/CA-based contention access but

optionally provides contention-free access to the medium. In IEEE 802.11, a super-frame

consists of contention section (DCF) and contention-free (PCF) sections. In IEEE 802.15.4, they

are called Contention Access Period (CAP) and Contention Free Period (CFP),

respectively, where Guaranteed Time Slots (GTSs) comprise the CFP as shown in Fig. 7. Time

synchronization is achieved by using frame beacons which are emitted at super-frame duration

intervals and the nodes that do not have anything to send/receive need to awake only during the

beacon resulting in very low duty cycle.

Figure 7: A super-frame with Contention Access Period (CAP) and Contention Free Period (CFP),
where GTSs comprise the CFP [19].

 IEEE 802.15.4 provides application support for creation of two wireless network

topologies; Star for home networking and Peer-to- Peer (P2P) for industrial and commercial

applications. Management of these networks is done in network layer. Two types of devices are

identified, Full functional device (FFD) and Reduced functional device (RFD). In Star topology,

Personal Area Network (PAN) coordinator that sends controls the communication by sending

beacons periodically for device synchronization. A FFD can establish its own network by

becoming a PAN coordinator, it also sends beacons, selects network id and allows association. It

also has a non-beacon mode in which beacons are for association purposes only. ZigBee

networks are primarily intended for low duty cycle sensor networks with low power consumption,

which comes from the ability to quickly attach information, detach, and go to deep sleep.

3. BSMA (Bulk Synchronous Medium Access): MAC Protocol for
Sensor Networks

Based on the extensive survey, we found that CSMA-based MAC protocols such as IEEE 802.11,

IEEE 802.15.4, PAMAS, S-MAC and T-MAC may be good at light load but incur a large

overhead due to collision at moderate load. TDMA-based protocols such as TRAMA, BTODS

and ODS are collision-free but require a large amount of scheduling overhead. This is the

motivation of our research to develop BSMA that avoids energy consumption due to collisions,

overhearing and idle listening by adopting a TDMA principle with a simple scheduling algorithm.

A key idea is to assign time slots to sensor nodes, which is done not individually but in “bulks.”

BMAC is a TDMA protocol, which takes advantage of spatial reuse. Nodes need not be

bothered about transmissions beyond two-hop environment as they neither interfere nor are

interfered by them. It takes a two-step approach for forming a schedule, first by identifying non-

interfering concentric rings around the sink and assigning BIGSLOTs to them. These BIGSLOTs

are in turn subdivided into multiple slots to avoid interference within the concentric region. In

other words, a set of nodes listen (and receive) in BIGSLOT 0, a second set of nodes listen (and

receive) in BIGSLOT 1, and so on. And, mutually exclusive sets are determined based on the

hop count from a “token” node (sink), which periodically transmits beacons. Beacon period is

determined based on traffic density but in sensor network, we assume that sensing activity

happens at a known interval. Receiver acknowledges the received packet with ACK packet if it

receives the packet correctly. Once the TDMA mechanism starts, if any node has much larger

number of children nodes than its neighbors then it can initiate transfer of some of these nodes to

its neighbors wherever possible. It helps in obtaining an even distribution of traffic resulting in

longer network lifetime.

Figure 8: BSMA mechanism.

Bulk Synchronous Mechanism

The sensor nodes and the sink once deployed have to form a topology centered at the sink. The

sink sends the initial beacon message, SINK_MSG packet, containing a timestamp that is

forwarded towards the periphery by the sensor nodes. The communication between the nodes

before the schedules are drawn up is through random access. Each node upon receiving the

SINK_MSG notes the hop count and the time slot to find its own BIGSLOT period, which is the

nearest super-frame the node can participate. Subsequent super-frames can be computed by

adding 3×super-frame-size. It then increments the hop count and forwards the SINK_MSG. If a

node receives same hop-count from two nodes, it chooses the one with higher signal strength.

This ensures better quality link and more tolerance to noise. Refer Fig. 8 for details.

In Fig. 9 nodes A and H are beyond each other’s range. Suppose node J receives

SINK_MSG from node H first and does not consider signal strength, it chooses node H as its

parent. It may receive later SINK_MSG from nodes A and C but with same hop-count. Ideally

node J should be child node for A or C. Now node H may suffer from interference from node A

and may interfere with transmissions to node A from its child nodes. Though relocating the slots

will solve this problem, shorter and more tolerant links are desirable. Hence, signal strength is

also taken into consideration while determining the parent node.

BIGSLOT (super-frame)

S a b c d

Sink

a2

a1

SINK_MSG

Reserved for Sink-a
communication

Reserved for a-b
communication

Reserved for b-c
communication

Reserved for c-d
as well as Sink-a
communication

Reserved for d-e
as well as a-b
communication

time

BIGSLOT (super-frame)

S a b c d

Sink

a2

a1

SINK_MSG

Reserved for Sink-a
communication

Reserved for a-b
communication

Reserved for b-c
communication

Reserved for c-d
as well as Sink-a
communication

Reserved for d-e
as well as a-b
communication

time

Figure 9: BIGSLOT allocation in BSMA.

Beacon period is determined based on traffic density but in sensor network, we assume

that sensing activity happens at a known interval. A node waits for synchronization period during

which it gets the SINK_MSG from the sink being forwarded by different nodes. It selects the

node with least number of hops to the sink as its parent node and informs the selected node by

PARENT_SEL_MSG. This forms stage 1 of the BSMA algorithm. The following figure

describes how node d in Fig. 8, which is four hops away from the sink, calculates its next

BIGSLOT period from the hop-count and original timestamp in the SINK_MSG.

Since we have a sink-oriented network, nodes only need to have active links from and to

their parent node and child nodes. Once a node receives PARENT_SEL_MSG it adds the sender

to its list of child nodes. Whenever the node receives SINK_MSG or PARENT_SEL_MSG it

adds the sender to its neighbor list. Parent node schedules the links to its child nodes during its

assigned BIGSLOT period. Hence, a node while scheduling can ignore links to its neighbors who

are not its child nodes. The child nodes that are not leaf nodes repeat the process. The

information gathered during the random access period regarding the neighbors is retained; it is

useful during any future rearrangements.

Fig. 10 shows the pseudo code for implementing BSMA protocol. It consists of two

stages: In stage 1, the nearest super-frame (or BIGSLOT) the node can participate as parent is

determined. Each node forms a schedule for its child nodes based on the neighbor information,

S

A C

DF

E

G

H

S-A A-S

F-A A-F D-A A-D

S-C C-S

G-C C-G

J

BIGSLOT 1

BIGSLOT 2

time

Node A schedule Node C schedule

S

A C

DF

E

G

H

S-A A-S

F-A A-F D-A A-D

S-C C-S

G-C C-G

J

BIGSLOT 1

BIGSLOT 2

time

Node A schedule Node C schedule

SCHEDULE_PKT heard from neighbors and PARENT_SEL_MSG messages. Initially it finds if

it has heard any SCHEDULE_PKT from its neighbors in the same level. If it has then it

schedules its child nodes in the remaining part of the BIGSLOT. If no SCHEDULE_PKT has

been heard, the node can choose to position its slots anywhere in its BIGSLOT period.

Contiguous slots are desired for a parent node as it helps in reducing the costs of switching on and

off multiple times. It can be done by obtaining n contiguous slots in the slot table, where n is at

the minimum number_of_childnodes*2.

Finding such contiguous zones will not be difficult as the protocol aims at very low duty

cycles, bandwidth available is larger than the traffic offered and the whole BIGSLOT duration is

divided only within the two-hop environment beyond which it can be reused. Once the node

decides on the schedule it advertises it in its neighborhood using SCHEDULE_PKT. If it receives

a SCHEDULE_PKT from its neighbor which conflicts with its allocation, the node with lower

address gives up and calculates and advertises a new schedule. It waits for acknowledgement

from its child nodes in the form of ACK_SCHED. If a node receives a SCHEDULE_PKT from

its parent node it replies with ACK_SCHED, other nodes overhearing can use the information

present to form their own schedules, which do not conflict. If the node sending

SCHEDULE__PKT times out, it re-advertises a few times. Eventually if no ACK_SCHED is

received from one or few of the nodes it adjusts the schedule to reflect the changes and sends a

new SCHEDULE_PKT. Once all ACK_SCHED are received, the nodes move into TDMA

mode. In Fig. 9 nodes E, A, C and, H are in BIGSLOT2. Node A has F and D as child nodes and

node C has G as its child node. Links to and from S to nodes A and C are scheduled in

BIGSLOT1. Nodes A and C are responsible for sharing BIGSLOT2 among their neighbor. The

figure shows the slots shared by them in the BIGSLOT2 on a mutually exclusive basis using stage

2 of BSMA.

� � � � � � � �
� 	 �
 � � � � � � � �
 � �
 � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � 	 � � � � � � � � � � �
 � � 	 �
 � � � �
 	 � � �

� � � � � � � � � � � �
 � �
 � � � � � � � � � � � 	 �
 � � � � �
 	 � � � � � � � � � � � 	 � � � � � � � � � � � � �
�

� � � � � � � � 	 � � � � � � � 	 � � � �
 � � � � � � � � � �
 � � � � � � � � � � � � � �
� � � � � � � � � � 	 � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � �� � � � � 	 � � � � � � � � � � � � ! �
 � � � � � � � � � � � � � � � �
� �� � � � � 	 � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � ! " #
� � � � � 	 � � � � � � � � 	 �
 � � � � �
 	 � ! " #
�
 � � � � � � 	 � � �
 � � � � � � � � � 	 � � � � � � � � 	 � #
	 � $ � � � � � � � � � � � � � � � � � � % �
 � � � � �
 � � � � � � � � � � � � � � #

&

� 	 � � � 	 � � �
 � � � � � � � � � 	 � � � � � � � � 	 �
�

� ' � � �
 � � � � � � 	 � � � � � � � � 	 �
�

� � � � () � � �
 � 	 (#
� � � � *)

� � � � �) � � �
 � 	 � #
� � � � �)
� � � � *) � � �
 � 	 * #

&
&

� � � � � � � *
� 	 �
 � � � � � � 	 '
 � � � �
 � �
 �
 � � �� � � � � � 	 � � � � 	 � � � � $ � � � � � � � � � � � � '
 � �
 � � � �
 � � � � � 	 �
 � � ' � �
 � � � 	 � � � � 	 � � 	 � � �

� � � � � � � � � � � 	 � 	 � � � �
 	 � � � � � � � �
 � �
 � � � � � � � '
 � � � �
 � �
 � � ' � �
 � � � �
 � � � 	 � � � � � 	 � � � � � � � � � � � � � � � � � � 	 � � �
 � � � � � �

� � � � � � � � � � �
 � �
 �
�

� � � � � � � � � � (#
� � � � � � � � � � � � � � � � � � �	
 � � � � � � � � #

� � � � �) � � � 	
 � � � � � � � � �
 � � � 	 � � � � �
�

'
 � 	 � � � � � � � �
� � � � � � � � � % % #

� 	 � � � � �
 � � � � 	 � � � � � � #
� #
� � � � � � � � � % % #
'
 � 	 � � � � � � � �

� � � � � � � � � % % #
� 	 � � � � �
 � � � � 	 � � � � � � #
� 	 � #
� � � � � � � � � % % #

& � � � 	 � � � �
� #

 � #

&

� � � � �
 � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � 	 � � �
 � � � 	 � � � �
 � 	
 �
 � � � � � � � � � � � � � � � � �

Figure 10: Pseudo code for implementing BSMA protocol.

Fig. 11 shows the setup phase of BSMA. Fig. 11(a) shows the process of electing a

node’s parent and Fig. 11(b) shows the process of electing its children nodes in the tree structure

rooted at the sink. Once the setup phase is completed, nodes shift to TDMA mode. They use the

assigned slot for their own communication. If they experience successive collisions, they need to

change the slot scheduling. Monitored data is periodically sent to the sink and forms majority of

the packets directed towards the sink. The packets from the sink may be maintenance messages

that are broadcast over the network and travel from sink to periphery. Sink originating messages

tend to form a small fraction of the total messages sent. The Data packet can be of variable size.

The slot size has to at minimum maximum packet size plus ACK packet size. Every data packet

is immediately acknowledged with an ACK packet. Guard space between slots is present to

tolerate some amount of clock drift before the nodes get synchronize again.

(a) Setting up a node’s parent (b) Setting up a node’s children

Figure 11: Setup phase of BSMA protocol.

Synchronization

Clock drift among the nodes can cause synchronization errors. Synchronization can be achieved

by having sink node send synchronization messages periodically at a higher power level to cover

the whole network. The nodes can also be synchronized when they update the clock using the

timestamp from the parent node. This can happen, at best, once in 3 BIGSLOT periods. Guard

space between individual slots can be calculated to tolerate certain amount of drift. It can be

calculated based on the periodicity of the synchronization messages, duty cycle and the actual

clock drift.

Handling Collisions

Collisions can happen due to drift in clock or if a new node enters the network. If it is due to drift

it will be corrected when the node receives the synchronization message. If a parent node detects

collision either as garbled reception or not receiving an ACK for the transmitted packet. If this

happens for p consecutive times, it concludes that the slot suffers from collision and tries to

relocate the slot. The child node also stays awake beyond the schedule in its parent’s BIGSLOT

period to facilitate the relocation of the slot. Both update their schedules accordingly. Since,

Collect as many as
SINK_MSG’s

from potential parents

Select a parent and
send PARENT_SEL_MSG

Send ACK_SCHED

Receive SCHEDULE_PKT
from the selected parent

Collect as many as
PARENT_SEL_MSG’s

from potential children

Broadcast SCHEDULE_PKT
to children

Receive ACK_SCHED
from children

Forward SINK_MSG

Start setup phase

Setup phase done

Collect as many as
SINK_MSG’s

from potential parents

Select a parent and
send PARENT_SEL_MSG

Send ACK_SCHED

Receive SCHEDULE_PKT
from the selected parent

Collect as many as
PARENT_SEL_MSG’s

from potential children

Broadcast SCHEDULE_PKT
to children

Receive ACK_SCHED
from children

Forward SINK_MSG

Start setup phase

Setup phase done

BIGSLOT is designed so that nodes have small duty cycle and that they are reused beyond two

hops, the conflicting slot can be easily relocated. The other nodes having the schedule of the

nodes involved in relocating the slot need not be informed as exchanging schedules is mainly

useful during set up of the network. The accidental collision problem could be more remote if the

neighboring node chose their schedules quite far from each other in their BIGSLOT period. This

also facilitates relocating the slot near to its existing schedule if consecutive collisions happen due

to extraneous reasons. Thus handling of collisions in above fashion provides more flexibility to

the BSMA’s TDMA phase.

Scalability

The network is sink-oriented and can be replicated with multiple sinks with a separate sink-to-

sink protocol to build large-scale network. Individual network can be large as BSMA leverages

spatial reuse along with as structured layout. However the nodes nearer to the sink could be

loaded more resulting in their early demise and partitioning of network. This can be handled by

having a higher density of the nodes near the sink, which would prolong the overall network

lifetime. This also helps to develop almost a spoke pattern near the sink due to lesser node degree

for nodes near the sink. The disadvantage being more nodes is needed. However, the network is

useful only if the nodes have a path to the sink. Otherwise even if the nodes at the periphery

survive the resulting network partition due to demise of nodes near the sink will render the

network useless. The cost of few more nodes near the sink would not be considerable if the

increase in overall network lifetime is taken into consideration. Since we are looking at very low

duty cycles, unavailability of timeslots during TDMA phase will not be a concern. Once the

TDMA mechanism starts, if any node has much larger number of children nodes than its

neighbors then it can initiate transfer of some of these nodes to its neighbors wherever possible.

It helps in obtaining an even distribution of traffic resulting in longer network lifetime.

Addressing Scheme and Routing

Since sink-oriented networks are considered the flow of messages is predominantly upstream

(towards the sink) or downstream (towards the periphery) and does not require a very general

routing scheme. The Sink node can allocate the addresses. This helps the sink to locally get a

rough topology of the network. Multi-casting can be done efficiently. The sink divides the

address space among its child nodes. The child node takes up the first address in the subdivision

and last address is used to refer to the group. The child node in-turn divides the remaining among

its child nodes. Hence, if the sink wants to send a message only to a branch along a child node, it

can do so by selecting the address of that subdivision. If a provision is made to inform the sink of

further divisions, it can obtain a more detailed picture of the network. More fine multi-casting

can be achieved. Intermediate nodes in the tree network can multi-cast based on their

subdivisions. This kind of distribution is decentralized. The sink node distributes the address

space among its neighbors. The nodes allocate addresses to the nodes further downstream. Since

the address space is quite large there should be deficiency at any node. Another method is that

the nodes use their device numbers during the formation of the network. The nodes, including the

sink, then distribute the address space proportional to the number of nodes in each branch. The

sink addresses can be universally known, since there is only one sink in each group. Nodes could

embed the branch density as part of their first message. The sink may be informed about the

allocation if it needs to have a picture of the whole topology.

4. Tiny OS Environment

BSMA is implemented on Motes using TinyOS operating system environment [20]. TinyOS

provides a well-defined programming model with focus on modularity, efficiency and

concurrency. Modularity is based on component model where each component implements a

specific function. The key advantages are reusability and simplicity of design. Each component

specifically declares in the interface (.comp file);

• The commands(services) it provides to the other components

• The commands it uses which are provided by other components

• The events handled

• The events signaled

The functionality is implemented in the .c file. Thus a clear separation of the implementation

and interface is maintained providing flexibility to change the implementation as long as the

interface is not changed. Modular design also enables faster development. Each component has

its own Frame where the memory used is declared and a set of tasks. Since frames are statically

allocated it gives the memory requirements of a component at compile time avoiding overhead

associated with dynamic memory allocation. Tasks are primary unit of computation and in the

two-level structure they can be pre-empted by events. Tasks run to completion unless pre-

empted. They can call lower level commands, signal higher-level events and schedule other tasks

in the component. Tasks simulate concurrency using events. Commands are non-blocking calls

to lower level components. They deposit the request parameters in component’s frame and post a

task for execution. They cannot signal events, this is done to avoid cycles. Event handlers deal

with hardware events either directly or indirectly. They deposit the information in the frame and

can post tasks, signal higher level events and call lower level commands.

 The components are then wired together. Thus all the applications and OS components

compile into a single executable. This is done for efficiency and to obtain a small footprint

required for embedded devices. The wiring is done by connecting the interfaces by macros, i.e.

one interface command is #defined as another. The wiring of the components is explicitly

defined in .desc file. Thus we have the component definition in .comp file, the implementation in

.c file and wiring information in .desc file. The whole wiring structure can be represented as a

graph. Component graph below shows how components can be wired to form a single

executable.

Figure 12: Component graph of TinyOS [21].

5. System Model

Sensor networks considered are multi-hop with following assumptions

RFM

Radio byte

Radio Packet

UART

Serial Packet

I2C

Temp

Photo

Active Messages

Clocks
bit

byte

packet

Ad hoc Routing Application
application

HW

SW

� Network consists of many sensors and more than sinks. Sinks have superior power and

processing availability.
� Time synchronization is achieved by beacons broadcast by sink or by nodes

synchronizing with their parent nodes.

Nodes are organized rooted at a sink in a tree fashion. Tree is built by propagating an

initialization message from the sink toward periphery. Hop-count is updated as the message

propagates towards periphery. Nodes associate themselves as child nodes with the node from

which they receive the message with highest signal strength with the least hop count from the

sink.

 Mote system has the following characteristics [7].
� MICA2 series hardware: MPR400 (916 MHz), MPR410 (433 MHz), and MPR420 (315

MHz)
� MICA2 utilizes a powerful Atmega128L microcontroller and a frequency tunable radio

with extended range
� MICA2 radio

o Consumes 8mA and 8~12mA in full operation but consumes 2uA in sleep mode

o Can be adjusted for a range of output power levels via register called PA_POW:

5.3~26.7mA (-20~10dBm) (MPR 410/420)

o Also provides a measurement of the received signal strength (RSSI) and is

available to the software via ADC channel 0.

6. BSMA Protocol Interface

BSMA is a MAC and limited routing layer solution. Hence it provides commands to applications

to send data and utilizes the services provided by the physical layer. BSMA is a two-stage

protocol. In the first stage it builds up the information required for TDMA scheduling using

random access and then transitions into TDMA. BSMA is implemented as a component. It

provides an interface that can be used by applications to send and receive data. BSMA uses the

commands provided by components PhyControl, RadioState, CarrierSense, PhyComm, Random,

Clock, TimeStamp and PowerManagement. Here the Physical layer used is the one provided by

ISI as part of the SMAC protocol [2]. BSMA replaces SMAC as the medium access protocol

while retaining the same physical layer. Fig. 2 shows the BSMA interface followed by the

discussion on each of the interface functions.

interface BSMAComm
{
 // Broadcast a message
 command result_t broadcastMsg(void* msg, uint8_t length);
 event result_t broadcastDone(void* msg);

 // The following are unicast messages

 command result_t unicastMsgAddr(void* msg, uint8_t length, uint16_t toAddr); //
Address is specified and direction is derived

 command result_t unicastMsgDirec(void* msg, uint8_t length, uint16_t direction); //
just upstream or downstream is mentioned
// upstream for messages to sink and downstream for messages to child tree

 event result_t unicastAddrDone(void* msg);
 event result_t unicastDirecDone(void* msg);

 // msgClear clears all pending messages in queue
 command result_t msgClear ();

 // signal received message
 event void* recvDone(void* msg);

}
Figure 2: BSMA interface.

Commands

Commands included in the BSMA interface are used by higher level components to obtain

services of BSMA. The main services provided by BSMA are
� broadcastMsg: This command is used to send broadcast message. The message is sent

both upstream and downstream
� unicastMsgAddr: This command is used to send unicast message if the application

knows the address of the destination node. At present it can be either the parent node or

one of the child node.
� unicastMsgDirec: This is most commonly used command and it specifies whether the

message is for sink or for distribution among the child nodes.

Signals

Signals included in the BSMA interface are as follows.
� recvDone: This signals higher level component that a message was received
� broadcastDone: This signals higher level component that the request to broadcast has

been acted upon. The result is provided in result_t.
� unicastAddrDone: This signals higher level component that the request to unicast based

on address has been acted upon. The result is provided in result_t.

� unicastDirecDone: This signals higher level component that the request to unicast based

on direction has been acted upon. The result is provided in result_t.

7. BSMA Protocol Implementation

This implements the actual handling of the data at MAC and limited routing. The messages can

be either sent upstream or downstream. From the functionality perspective it can be divided into

timer handling, event handling, and dispatchers.

Timer handling

BSMA component uses the event generated by Clock component. The event is delivered

periodically and all timers are updated upon reception of this event. The function called is event

void Clock.fire(). The individual timers are actually variables initialized to their timeout value.

Upon entering this routing the timers are decremented and when they reach zero the respective

action is taken. The clock can be signaled to higher components if needed using signal.

Event handlers

Clock is one type of event handler. Other important one is to handle reception of message and

status message of transmissions. event void* PhyComm.rxPktDone(void* packet, char error)

is signaled when the physical layer completes reception of a message. If the message is received

successfully then the type of the packet is determined and respective handler is called
� Sink Message handler handleSINK_MSG(packet): This function is results in vertical

spatial reuse by the dividing the whole network into three BIGSLOT periods. It the uses

the timestamp present and the hop count to derive the BIGSLOT number of the node. It

then increments the hop count and rebroadcasts the message.
� Data Packet handler handleDATA_PKT(packet): Processing of data packet and passing

it on to the application module.
� Parent Select Message handler handlePARENT_SEL_MSG(packet): Upon receiving

the PARENT_SEL_MSG the node adds the sending node as one of the child nodes. This

information is needed to generate the TDMA Schedule.
� Schedule Packet handler handleSCHEDULE_PKT(packet): On receiving the

SCHEDULE_PKT if the node is the intended child node it updates the information about

which slot is allocated to it by the parent node. Else it node whether it is from a node in

same BIGSLOT as it is, if so this information is vital to determining if any conflicts

result during drawing up the schedule for its child nodes.
� Acknowledgement Packet handler handleACK(packet): Handling of the

acknowledgement for the data send. If ACK is lost then node updates the information

required to determine if the link has gone bad.
� Ack Schedule Packet handler handleACK_SCHED(packet): All child nodes

acknowledge the receipt of SCHEDULE_PKT, if this is not received the parent node may

assume that the child node has a problem.
� Unknown Message type handler handleErrPkt(): error handling.

Dispatchers

They are responsible for generation of different kinds of messages.
� sendSINK_MSG: This function is initiated by the sink node only. The other nodes

forward it when they receive the sink message. Before forwarding the hop count is

incremented.
� sendPARENT_SEL_MSG: Once the timeout for collecting sink messages is over, the

node selects the node closest to the sink, determined by the hop count field, as the parent

node. This information is conveyed to the node by means of a PARENT_SEL_MSG.
� sendSCHEDULE_PKT: Once the timeout for obtaining the PARENT_SEL_MSG is

over, the parent node computes the schedule for the child nodes and broadcast them in the

SCHEDULE_PKT. If it receives conflicting selections from the neighboring node then

the node with the lower address will recomputed the schedule and rebroadcasts it. Since

the BIGSLOT period is quite big and can be reused two hops away, schedules of the

neighboring nodes can be accommodated. The Schedules overheard are also maintained

if possible to help recovery procedures and also to compute the schedule in a non-

conflicting manner.
� sendACK_SCHED: Upon reception of SCHEDULE_PKT the child nodes sends an

ACK_SCHED to the parent node. Sending is randomized within a small duration so that

all the child nodes don’t send at the same time.
� sendACK: All Data packets are acknowledged.

Local information

Another important part of BSMA implementation is how to maintain local information. The local

information such as states, schedule, and neighbor is maintained in the following data structures.

First, states provide vital information in both random access and TDMA periods. The

different states possible are maintained as an enumeration. The present state is maintained in a

state variable of the enumeration type. The state transition diagram provides the transitions

between various states. Information regarding whether in Random Access or TDMA phase is

also maintained. Once the building of schedules is done the nodes transition into TDMA phase.

In this the operating state machines are that of the sender and the receiver.

Second, schedule is maintained in Schedule schedTab[BSMA_MAX_NUM_SCHED],

where Schedule is

typedef struct {

 uint16_t NodeAddr;

 uint8_t BSNum;

 uint16_t BSOffset;

 unit8_t NumSlots;

}__attribut__((packed)) Schedule;

The availability of the slots in the BIGSLOT is maintained using the following data

 // BigSlot availability

 typedef Struct {

 uint16_t startSlot;

 unit8_t numSlots;

 uint8_t sendRecv; // I guess not needed, just availability info

 } slotUsage;

 uint8_t myBS;

 uint8_t parentBS;

 uint8_t childBS;

 slotUsage usedSlots [BSMA_MAX_NUM_NEIGHB];

Hence finer details about the actual Schedule of the neighbors need not be maintained. Just the

number of slots used by them in the BIGSLOT period and their location suffices. The

information derived from sink message is used to determine the BIGSLOT number used by the

node and is stored in myBS, the parent BIGSLOT number and child BIGSLOT number is stored

in parentBS, childBS respectively.

Thirdly, neighbor information is derived from the Schedule packets broadcast by the

nodes. The information in them is processed and stored in the following data structures.

slotUsage usedSlots [BSMA_MAX_NUM_NEIGHB];

slotUsage UsedSlotsInParentBS [BSMA_MAX_NUM_NEIGHB];

However, memory permitting, more detailed information can be stored in

uint8_t numNeighb; // number of known neighbors

NeighbList neighbList[BSMA_MAX_NUM_NEIGHB]; // neighbor list

typedef struct {

 uint16_t neighbAddr;

 uint8_t relation;

 Schedule sched [15];

 unit8_t numActiveSchedules;

 uint8_t active; //flag indicating the node is active recently

 } NeighbList;

8. Source Structure of BSMA

BSMA is implemented using SMAC implementation [1] by ISI, which is again based on TinyOS

implementation. It consists of three files: BSMAMsg.h, BSMAComm.nc, and BSMAM.nc.

BAMAMsg.h contains the data structures used in BSMAM.c. BSMAComm.nc contains the

interface provided by the BSMA component (see Fig. 2). BSMAM.nc implements the BSMA

protocol.

BSMAMsg.h

// MAC header to be included by upper layer headers -- nested headers
typedef struct {
} __attribute__((packed)) MACHeader;

typedef struct {
}__attribut__((packed)) Schedule;

//Control packet
typedef struct {
} __attribute__((packed)) MACCtrlPkt;

typedef struct {
} RadioTime;

BSMAM.nc

module BSMAM
{
 provides {
 interface StdControl as MACControl;
 interface MACComm;
 /*
 interface MACTest;

 interface MACPerformance;
 */
 }
 uses {
 interface StdControl as PhyControl;
 interface RadioState;
 interface CarrierSense;
 interface PhyComm;
 interface Random;
 interface ClockBSMA as Clock;
 interface TimeStamp;
 interface PowerManagement;
 }
}

//Handle packet reception completion from physical layer
event void* PhyComm.rxPktDone (void* packet, char error) {}

// handle transmission complete signal from Physical layer
event result_t PhyComm.txPktDone (void* packet) {}

// Handle Clock fire event
// The timers implemented in BSMA are dependent on this function for updation
event void Clock.fire() {}

// Calculate the shift needed to position BIGSLOT
int findShift (unit8_t originalRegion, unit8_t nextFramePos) {}

// find the BIGSLOT of the node
void findBigSlot (MACCtrlPkt* pkt) {}

// Handle receipt of sink message, determine the BIGSLOt and
// forward it after updating the hop_count
void handleSINK_MSG (void* pkt) {}

//Hanlde PACKET_SEL_MSG, store the sender as a child node
void handlePARENT_SEL_MSG (void* pkt) {}

// Handle receipt of Data Packet
void* handleDATA_PKT (void* pkt) {}

// handle receipt of ACK
void handleACK (void* pkt)

//Upate the portion the BIGSLOT used
void updateUsedSlots (void* pkt) {}

// Handles SCHEDULE_PKT, note the slot in parent BIGSLOT
// period available to send and received data
void handleSCHEDULE_PKT (void* pkt)

// Checkt if channel is idle
event result_t CarrierSense.channelIdle() {}

// Compute the Schedule from the information gathered through
// PARENT_SEL_MSG and other SCHEDULE_PKT previously broadcast

// by neighbors
void form_schedule (slot slot_table [])

9. Running BSMA

A simple application (BSMATest.nc and BSMATestM.nc) has been designed to test the basic

functionality of BSMA. The default configuration is to use n motes. And each mote sends out 10

unicast messages. The node with ID 1 is selected as the sink node. In order to run the application,

1) Compile and install by 'make mica' and 'make install mica'. 2) You can either specify node ID

(TOS_LOCAL_ADDRESS) in system/tos.h, or simply using 'make install.x mica', where x is the

node ID. One of the node has to have node ID 1, which will be the sink node.

BSMATest.nc

implementation
{
 components Main, BSMATestM, BSMA;

 Main.StdControl -> BSMATestM;
 BSMATestM.MACControl -> BSMA;
 BSMATestM.MACComm -> BSMA;
 BSMATestM.MACTest -> BSMA;

}

BSMATestM.nc

module BSMATestM
{
 provides interface StdControl;
 uses {
 interface StdControl as MACControl;
 interface MACComm;
 }
}

References

[1] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol for wireless sensor

networks,” IEEE Infocom, pp. 1567–1576, 2002.

[2] IEEE, Wireless LAN medium access control (MAC) and physical layer specifications,
ANSI/IEEE Standard 802.11,1999 Edition, 1999.

[3] M. J. Miller and N. H. Vaidya, “On-Demand TDMA Scheduling for Energy Conservation in

Sensor Networks,” Technical Report, June 2004.

[4] V. Rajendran, K. Obraczka, and J.J. Garcia-Luna-Aceves, “Energy-Efficient, Collision-Free
Medium Access Control for Wireless Sensor Networks,” The First ACM Conference on
Embedded Networked Sensor Systems (SenSys’03), November 2003.

[5] Jose A. Gutierrez, Edgar H. Callaway, Jr., and Raymond L. Barrett, Jr., Low-Rate Wireless
Personal Area Networks: Enabling Wireless Sensors with IEEE 802.15.4, IEEE Press, 2003.

[6] Tijs van Dam, Koen Langendoen, “An Adaptive Energy-Efficient MAC Protocol for Wireless
Sensor Networks,” The First ACM Conference on Embedded Networked Sensor Systems
(SenSys’03), November 2003.

[7] MPR/MIB Mote Hardware Users Manual (Rev. A, Document 7430-0021-05), December
2003.

[8] Hagen Woesner, Jean-Pierre Ebert, Morten Schlager, and Adam Wolisz, “Power-Saving
Mechanisms in Emerging Standards for Wireless LANs: The MAC Level Perspective,”
IEEE Personal Communications, Vol. 5, Issue 3, pp. 40-48, Jun. 1998.

[9] W. Stallings, “IEEE 802.11 Wireless LAN Standard,” Chapter 14, Wireless Communications
and Networks, Prentice Hall, Inc., 2002.

[10] IEEE Std 802.11-1999, Local and Metropolitan Area Network, Specific Requirements, Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
http://standards.ieee.org/getieee802/download/802.11-1999.pdf.

[11] L. Huang and T.-H. Lai, “On the scalability of IEEE 802.11 ad hoc networks,” The 3rd ACM
international symposium on Mobile ad hoc networking & computing (MobiHoc), pp. 173-
182, 2002.

[12] Benjie Chen, Kyle Jamieson, Robert Morris, Hari Balakrishnan, “Span: An Energy-Efficient
Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks,” 7th
ACM International Conference on Mobile Computing and Networking (MobiCom’01), July
2001.

[13] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh, “Power-Saving Protocols for IEEE
802.11-Based Multi-Hop Ad Hoc Networks,” IEEE Infocom, 2002.

[14] Ronny Krashinsky and Hari Balakrishnan, “Minimizing Energy for Wireless Web Access
Using Bounded Slowdown,” 8th ACM International Conference on Mobile Computing and
Networking (MobiCom’02), September 2002.

[15] E. Jung and N. Vaidya, “An Energy Efficient MAC Protocol for Wireless LANs,” IEEE
Infocom, 2002.

[16] Rong Zheng, Robin Kravets, “On-demand Power Management for Ad Hoc Networks,” IEEE
Infocom, 2003.

[17] S. Singh and C.S. Raghavendra, “PAMAS: Power aware multiaccess protocol with signalling
for ad hoc networks”, Computer Communication Review, Vol. 28, No. 3, pp. 5–26, 1998.

[18] G. Girling, J. Wa, P. Osborn, R. Stefanova, “The Design and Implementation of a Low Power
Ad Hoc Protocol Stack,” IEEE Wireless Communications and Networking Conference
(WCNC), 2000.

[19] P. Kinney, “ZigBee Technology: Wireless Control that Simply Works,” IEEE 802.15.4 Task
Group, 2003.

[20] TinyOS, http://www.tinyos.net/

[21] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System architecture directions
for network sensors,” ASPLOS 2000, Cambridge, November 2000.

