Industrial and Manufacturing Engineering Department
NCA Accreditation Report
For The Degree of Bachelor of Industrial Engineering

Introduction
The Industrial and Manufacturing Engineering Department, Cleveland State University, Fenn College of Engineering, awards only one undergraduate degree. The title of the degree as it appears on the student’s transcript is, Bachelor of Industrial Engineering. There are no degree options.

The Industrial and Manufacturing Engineering Department strives to and to a significant level is responsive to the needs of our students, the employers of our students, our industrial visiting committee, our alumni, the department faculty, the college, and the university, all of whom are our constituents. Through the process of evaluation and assessment, we endeavor to improve our responsiveness by continuous review and development of our program, our metrics, and our evaluation and review process.

Goals
The program goals (1 through 6, listed below) have evolved from those previous stated prior to Cleveland State University’s conversion to the semester system. At that time, the undergraduate curriculum was recreated with the aid of a review half a dozen national respected IE programs, and the Institute of Industrial Engineers (IIE) and the Society of Manufacturing Engineers (SME) definitions of Industrial Engineering and Manufacturing Engineering. The goals were last revised and approved in October 2002.

It is the intention of the Industrial and Manufacturing Engineering Department to prepare students to be successful professionals in society. To accomplish this we recognize that engineering education involves not just the knowledge of the technical aspects of the discipline, but also the ability to function within the real world environment, considering the physical, social, ethical, economic, safety, and environmental factors. This means that the student must not only be able to create designs and solutions to engineering problems, but also to understand the impact of their designs and problem solutions and be able to communicate their ideas to a variety of audiences.

The goals of the Bachelor of Industrial Engineering degree program are to produce graduates who are able to:

1. Practice Industrial Engineering in one or more of the following enterprise areas such as: manufacturing systems, quality systems, operations analysis, production planning, or facilities planning and design.

2. Define and diagnose problems from an industrial engineering perspective, and implement solutions in an enterprise-wide environment.

3. Communicate effectively with technically and professionally diverse audiences at all levels of the enterprise.
4. Collaborate with others as a member or as a leader of an engineering or cross-functional enterprise team.

5. Continue to pursue life-long learning to develop knowledge professionally and keep current with the latest advancements in industrial engineering.

6. Pursue graduate studies leading to graduate degrees.

Outcomes

The above listed goals are met by the achievement of the following 11 program outcomes:

a. Ability to apply principles of mathematics, science & engineering to problems and situations
b. Ability to collect and analyze experimental data
c. Ability to analyze a system, construct a model of it, and design a new system
d. Ability to lead or participate in multidisciplinary team work
e. Ability to identify, formulate, and solve engineering problems
f. Understanding of professional and ethical responsibilities
g. Effective communication skills
h. Understanding of the global/social impact of engineering solutions
i. Commitment to engage in lifelong learning
j. Knowledge of contemporary issues
k. Ability to apply techniques, skills and modern engineering tools and practices to IE problems and situations.

The program outcomes are achieved through a variety of means; among other things the program curriculum, the integrated design experience (the two course senior design sequence IME480 and IME 481), and the student/alumni participation in professional societies and activities.

The program outcomes contribute to the achievement of the goals (the objectives), as shown in the Outcomes-Objectives Form, on the next page.

The goals have been determined by a review of the Institute of Industrial Engineers and the Society of Manufacturing Engineers definition of Industrial and Manufacturing Engineering, comments from IE alumni, and visiting committee members, and discussions with employers.

To assure continuous improvement of the industrial engineering program, each course is evaluated relative to the achievement of its specific program outcomes itemized in each course syllabus. The evaluation is accomplished by the instructor who files an ABET Course Instructor Reflection Form each time the course is taught. These forms are reviewed by the assigned instructor, prior to the next offering of the course, with the aim of improving the achievement of the program outcomes.
The Course Instructor Reflection Form is in electronic format, for easy update. A copy of the form is shown on the next page.
ABET Course Instructor Reflection Form

Course number and name: _____ Term and year: _____

For the outcomes listed below, click in the shaded box for the items that are specified for this course. This will place an "X" in the box. Then for each outcome that is checked, click on the box to indicate the level to which you believe that outcome was met.

Check outcomes for this course:

a. □ Ability to apply principles of mathematics, science & engineering to problems and situations
b. □ Ability to collect and analyze experimental data
c. □ Ability to analyze a system, construct a model of it, and design a new system
d. □ Ability to lead or participate in multidisciplinary team work
e. □ Ability to identify, formulate, and solve engineering problems
f. □ Understanding of professional and ethical responsibilities
g. □ Effective communication skills
h. □ Understanding of the global/social impact of engineering solutions
i. □ Commitment to engage in lifelong learning
j. □ Knowledge of contemporary issues
k. □ Ability to apply techniques, skills and modern engineering tools and practices to fit problems and situations

Click in the shaded area below and provide an explanation to support your evaluation given above. If relevant, also provide an assessment of the students' knowledge of the prerequisite topics. Provide recommendations on how you should change the course in order to better meet the program outcomes. The space will expand as you type and will start a second page as needed.

Course evaluated by:
Print name(s)

Signature: ________________ Date: ____

ABET Course Evaluations.doc

To assure that all program outcomes are tracked, the department also maintains the Outcomes-Curriculum Map, shown on the next page. In the map the entries of 'X' cross reference the specific program outcomes to the specific program courses.
The Outcomes-Curriculum Map is reviewed by the department each time a program course is added or modified. In March of 2007, IME101 – Introduction to CAD (1 cr), and ENG105 – English Writing Center (2 cr), were removed from the program, and replaced with ESC315 – Electrical Concepts (3 cr) at the recommendation of our visiting committee, to better prepare our students for work in the area of manufacturing.
Research

For the most part, the goals are met by the curriculum. The Industrial and Manufacturing Engineering Department maintains a Curriculum Sheet (consisting of both a regular four year curriculum and the five year co-op curriculum). The curriculum is also cross referenced in a Prerequisite Flow Chart. The curriculum sheets and flow chart are shown in the next three figures.

CLEVELAND STATE UNIVERSITY

Name __ I.D. No. ____________________________

INDUSTRIAL ENGINEERING
Curriculum Sheet

Regular four year curriculum
CLEVELAND STATE UNIVERSITY

Name: ____________________________ I.D. No: ____________________________

INDUSTRIAL ENGINEERING

Co-op Curriculum Sheet

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Fall Semester</th>
<th>Cr.</th>
<th>Grade</th>
<th>Spring Semester</th>
<th>Cr.</th>
<th>Grade</th>
<th>Summer Semester</th>
<th>Cr.</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 101 English I</td>
<td>4</td>
<td></td>
<td></td>
<td>ENG 102 English II</td>
<td>3</td>
<td></td>
<td>Work of School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTH 181 Calculus I</td>
<td>4</td>
<td></td>
<td></td>
<td>MTH 182 Calculus II</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 261 Gen. Chemistry I</td>
<td>4</td>
<td></td>
<td></td>
<td>PHY 243 University Physics I (Writing)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 300 Gen. Chem. Lab I</td>
<td>1</td>
<td></td>
<td></td>
<td>CSC 121 Career Orientation**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC 120 Intro to Engineering Design***</td>
<td>1</td>
<td></td>
<td></td>
<td>Gen Ed Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC 100 New Student Orient.*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Fall Semester</th>
<th>Cr.</th>
<th>Grade</th>
<th>Spring Semester</th>
<th>Cr.</th>
<th>Grade</th>
<th>Summer Semester</th>
<th>Cr.</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH 264 Matrices for Engineers</td>
<td>2</td>
<td></td>
<td></td>
<td>ESC 203 Statics & Dynamics</td>
<td>4</td>
<td></td>
<td>Co-op*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 244 Physics II (Writing)</td>
<td>5</td>
<td></td>
<td></td>
<td>ESC 210 Engineering Statistics & Probability</td>
<td>3</td>
<td></td>
<td>CSC 400</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ESC 151 C Programming</td>
<td>3</td>
<td></td>
<td></td>
<td>ESC 231 Thermodynamics</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC 220 Diff. Equations for Engineers</td>
<td>3</td>
<td></td>
<td></td>
<td>COM 242 Public & Professional Speaking</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC 270 Materials Science</td>
<td>3</td>
<td></td>
<td></td>
<td>Gen Ed Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Fall Semester</th>
<th>Cr.</th>
<th>Grade</th>
<th>Spring Semester</th>
<th>Cr.</th>
<th>Grade</th>
<th>Summer Semester</th>
<th>Cr.</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>IME 253 Mater. Processing & Methods</td>
<td>3</td>
<td></td>
<td></td>
<td>CSC 300 or 400</td>
<td>1</td>
<td></td>
<td>ESC 282 Engr. Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IME 253 Mater. Processing & Meth. Lab I</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IME 304 Work Design</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IME 305 Work Design Lab.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IME 320 Engineer Experimental Design</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IME 300 Operations Research I</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Fall Semester</th>
<th>Cr.</th>
<th>Grade</th>
<th>Spring Semester</th>
<th>Cr.</th>
<th>Grade</th>
<th>Summer Semester</th>
<th>Cr.</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-op*</td>
<td></td>
<td></td>
<td></td>
<td>IME 337 Operations Analysis II</td>
<td>3</td>
<td></td>
<td>Co-op*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSC 300 or 400</td>
<td>1</td>
<td></td>
<td></td>
<td>IME 405 Human Factors Engineering</td>
<td>3</td>
<td></td>
<td>CSC 400</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IME 410 Statistical Quality Control</td>
<td>3</td>
<td></td>
<td></td>
<td>IME 477 Facility Planning</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IME 479 Facilities Plan. Lab</td>
<td>3</td>
<td></td>
<td></td>
<td>ECE 315 Electrical Eng. Concepts</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 5</th>
<th>Fall Semester</th>
<th>Cr.</th>
<th>Grade</th>
<th>Spring Semester</th>
<th>Cr.</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>IME 455 Manufacturing Systems Engr.</td>
<td>3</td>
<td></td>
<td></td>
<td>IME 475 Systems Simulation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IME 470 Production Planning & Control</td>
<td>3</td>
<td></td>
<td></td>
<td>IME 481 Senior Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IME 495 Engineering Design (Writing)</td>
<td>3</td>
<td></td>
<td></td>
<td>PHIL 215 Engineering Ethics (Writing)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tech Elective</td>
<td>3</td>
<td></td>
<td></td>
<td>Tech Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Gen Ed Elective</td>
<td>3</td>
<td></td>
<td></td>
<td>Gen Ed Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

*Required for all IME students
**Not required for transfer students
***Required for freshmen and transfer students admitted to Engineering College Fall 2003 and after.
See Co-op Coordinator for answers to questions about CSC 300 and CSC 400

Minimum number of credits required for degree: 129 (128 excluding ESC 100 - New Student Orientation)

Five year Co-op curriculum
INDUSTRIAL MANUFACTURING ENGINEERING COURSES PREREQUISITES FLOW CHART

<table>
<thead>
<tr>
<th>1st Semester</th>
<th>2nd Semester</th>
<th>3rd Semester</th>
<th>4th Semester</th>
<th>5th Semester</th>
<th>6th Semester</th>
<th>7th Semester</th>
<th>8th Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
</tr>
<tr>
<td>ENG 101</td>
<td>ENG 102</td>
<td>ESC 151</td>
<td>COM 242</td>
<td>ESC 315</td>
<td>IME 480</td>
<td>IME 481</td>
<td></td>
</tr>
<tr>
<td>ESC 120</td>
<td>CSC 121</td>
<td>ESC 282</td>
<td>IME 477/478</td>
<td>IME 465</td>
<td>IME 470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTH 181</td>
<td>MTH 182</td>
<td>ESC 250</td>
<td>IME 330</td>
<td>IME 331</td>
<td>IME 475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC 100</td>
<td></td>
<td></td>
<td>IME 320</td>
<td>IME 410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 243</td>
<td>PHY 244</td>
<td>ESC 321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 261/266</td>
<td>ESC 270</td>
<td>IME 250/251</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Prerequisite Flow Chart**

- **Program Total**: 129 cr. hrs.
- (128 excluding ESC 100)

Prerequisite Flow Chart

IME flow chart.xls 11/08/06
Refer to the first four semesters on the curriculum sheet. The chemistry (CHM), and physics (PHY) courses as well as the engineering science courses, ESC 270 – Material Science, ESC 203 – Statics and Dynamics, ESC 321 – Thermodynamics, and ESC 315 – Electrical Concepts, provide the student with knowledge of the physical world and the laws of nature and engineering. The mathematics (MTH) courses, along with the engineering science courses ESC151 – C Programming, ESC 250 – Differential Equations, and ESC 310 – Engineering Statistics and Probability, provide the student with the tools to enable them to solve engineering problems.

We believe that the ability to communicate is so important, we require COM 242 – Public and Professional Speaking, as a program course. Note that the course is taught by professionals in the Communications Department, the people who know it best. We also believe instruction in technical writing would enhance the student’s ability to communicate. Currently the only department in the university to offer a course in technical writing is the Mechanical Engineering Department. This course is taught by a professional technical writer and we are working to include this course in our curriculum as well.

The university general education (GenED) requirements and PHL 215 – Engineering Ethics are intended to provide the student with an understanding and appreciation of the social, cultural, ethical, and environmental factors they will have to consider.

Beginning in the third year and continuing to the end of the program (fifth through the eight semester) a working knowledge of the technical aspects of Industrial Engineering is provided through the various Industrial Engineering (IME) courses; IME 250/251-Material Processing & Methods and Lab, IME 304/305 - Work Analysis and Measurement, IME 320 – Engineering Experimental Design, IME 405 - Industrial Ergonomics, and others.

Finally, the ability to analyze systems and synthesize solutions to real world problems, with their myriad of influencing factors and constraints is accomplished, in part, by the laboratory exercises, projects, and designs, and by the primarily design courses of IME 475 – Systems Simulation, and IME477/478 – Facility Planning and Lab.

The truest experience and test of the students’ ability to apply their knowledge and skills to real world problems is the two course capstone experience, IME480 – Engineering Design and IME481 – Senior Design.

The department reviews the program and program courses as problems have become apparent. The program review is also reviewed once per year following the annual department retreat which occurs after the annual visiting committee meeting.
Integrated Design Experience

Probably the most valuable means of evaluating our program and process is the senior design instructor assessment. Here the instructor has the opportunity to observe first hand, the graduating seniors’ abilities to work as a professional in a real-world environment; to see their strengths and weaknesses and relate that to our program.

This assessment is done by the instructor who teaches the two course senior capstone experience courses IME 480 – Engineering Design and IME 481 – Senior Design. This instructor has the challenging task of finding projects for the students; most often in the local organizations and industries, identifying a mentor within the company, and organizing the students into teams, matching if possible the individual personalities with their industrial mentors.

The instructor then coordinates and continuously monitors the progress of the senior design projects, with their industrial mentors. This effort culminates in a senior design project reports, and presentations which are usually scheduled on the same day as the IME Department Visiting Committee Meeting. All industrial mentors, some of whom are also members of our visiting committee, are invited to the presentations.

Following the completion of the senior design project reports and presentations, the instructor for the senior capstone experience, evaluates each team by the quality of their work on their project. He also files an Outcomes Assessment Survey Questions form for the entire class, which shows his evaluation of their performance as a class, relative to the outcomes a. through k.

Senior exit survey

At the conclusion of each spring semester, the graduating seniors are asked to complete the senior exit survey. The survey has a general part, a part which queries the student’s evaluation of each of the eleven program outcomes a-k, and a section where students are asked to make comments. These have given us valuable insight into the shortcomings of the program.

Alumni survey

The alumni survey was previously conducted by Fenn College every two years, on alternating years with an employer survey. However due to very low response, the employer survey was discontinued, and the alumni survey form was redesigned. The alumni survey form was formerly two pages long with the first page being general to all engineering disciplines. In 2006, the survey form was changed to a single page form, specific to the engineering discipline.

With the new simplified form, we had a greater percentage of responses, but we no longer have alumni response to the eleven specific program outcomes a-k. The new alumni survey contains only six questions relative to the respondents area of work, and their professional career. A copy of the form is shown on the next page of this report.
Industrial Engineering Alumni: Please answer the following questions.

My education at Fenn College of Engineering has enabled me to

1. Practice Industrial Engineering in the areas of (please check all that apply):
 - ☐ manufacturing systems
 - ☐ quality and/or reliability systems
 - ☐ operations analysis
 - ☐ production planning and scheduling
 - ☐ facilities planning
 - ☐ product and/or process design
 - ☐ management and/or supervision
 - ☐ marketing and/or sales
 - ☐ other areas

2. Define and diagnose problems from an industrial engineering perspective, and implement solutions in an enterprise-wide environment.

3. Communicate effectively with technically and professionally diverse audiences at all levels of the enterprise.

4. Collaborate with others as a member or as a leader of an engineering or cross-functional enterprise team.

5. Continue to pursue life-long learning to develop knowledge professionally and keep current with the latest advancements in industrial engineering.

6. Pursue graduate studies leading to graduate degrees

New Alumni Survey – Industrial Engineering
In the new alumni survey, we have mapped the responses to questions 2 through 6 to the eleven outcomes. For example,

Alumni query 2. *My education at Fenn College of Engineering has enabled me to 2. Define and diagnose problems from an industrial engineering perspective, and implement solutions in an enterprise wide environment*

logically maps to outcomes

a) *Ability to apply principles of mathematics, science & engineering to problems and situations*

b) *Ability to collect and analyze experimental data*

c) *Ability to analyze a system, construct a model of it, and design a new system*

d) *Ability to lead or participate in multidisciplinary team work*

e) *Ability to identify, formulate, and solve engineering problems*

k) *Ability to apply techniques, skills and modern engineering tools and practices to IE problems and situations.*

where alumni query 2, is essentially a summary of this collection of outcomes.

The complete mapping is shown in the following table.

<table>
<thead>
<tr>
<th>survey query</th>
<th>outcome</th>
<th>definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>a)</td>
<td>Ability to apply principles of mathematics, science & engineering to problems and situations</td>
</tr>
<tr>
<td>2</td>
<td>b)</td>
<td>Ability to collect and analyze experimental data</td>
</tr>
<tr>
<td>2</td>
<td>c)</td>
<td>Ability to analyze a system, construct a model of it, and design a new system</td>
</tr>
<tr>
<td>2, 3, 4</td>
<td>d)</td>
<td>Ability to lead or participate in multidisciplinary team work</td>
</tr>
<tr>
<td>2</td>
<td>e)</td>
<td>Ability to identify, formulate, and solve engineering problems</td>
</tr>
<tr>
<td></td>
<td>f)</td>
<td>Understanding of professional and ethical responsibilities</td>
</tr>
<tr>
<td>3</td>
<td>g)</td>
<td>Effective communication skills</td>
</tr>
<tr>
<td>5</td>
<td>h)</td>
<td>Understanding of the global/social impact of engineering solutions</td>
</tr>
<tr>
<td>5, 6</td>
<td>i)</td>
<td>Commitment to engage in lifelong learning</td>
</tr>
<tr>
<td>5</td>
<td>j)</td>
<td>Knowledge of contemporary issues</td>
</tr>
<tr>
<td>2</td>
<td>k)</td>
<td>Ability to apply techniques, skills and modern engineering tools and practices to IE problems and situations</td>
</tr>
</tbody>
</table>
Findings and Review

The analysis involves both qualitative evaluations and numeric measures of the outcomes. Regarding the qualitative evaluation, we consider the comments from the students’ course evaluations, the senior exit surveys, the comments from the visiting committee, and the instructor’s course reflections responses.

Regarding the numeric measures, we use the senior exit survey. We can no longer use the alumni survey since the information relative to the 11 items is no longer collected. The Senior exit survey uses a 5 point scale for rating. We consider 3.00 on a 5 point scale as an acceptable level of achievement.

We consider a change of 1.00 or more for a 5 point scale as significant.

The level of achievement for an outcome is calculated as the weighted average of the scores. For example, suppose 10 respondents all score an outcome as 5 on a 5 point scale. Then the score for the outcome is calculated as

\[
\text{level} = \frac{5 \times 10 + 4 \times 0 + 3 \times 0 + 2 \times 0 + 1 \times 0}{10} = 5.00
\]

We assess each outcome in turn. In this assessment, note that the number of respondents in the last six senior classes (2002, through 2007) were respectively 9, 10, 13, 8, 3 and 4.

Outcome (a): Ability to apply principles of mathematics, science & engineering to IE problems and situations

Knowledge of the principles of mathematics and science depends on the courses taught by the Mathematics, Chemistry and Physics departments, and is generally not within our control. However, the application of these principles are accomplished through the ESC (Engineering Science) courses, designed, reviewed, maintained, and taught by the Fenn College. These courses are for the most part within our control, since the Industrial and Manufacturing Engineering department participates in this process. In fact the department has primary responsibility to teach two of the ESC courses (ESC282 – Engineering Economy, and ESC310 – Engineering Statistics and Probability).

Results:

Response in

<table>
<thead>
<tr>
<th>Senior exit survey for year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare to a perfect score of 5</td>
<td>4.22</td>
<td>3.90</td>
<td>4.43</td>
<td>4.00</td>
<td>4.67</td>
<td>5.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alumni survey for year</th>
<th>2001</th>
<th>2003</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare to a perfect score of 5</td>
<td>4.06</td>
<td>4.11</td>
<td>3.82</td>
</tr>
</tbody>
</table>

The numbers in the alumni table above are the average of the responses to the questions 1, 2, and 3 from the previous Table 3.1-1 Alumni Survey-Outcomes Map (see the 2005
NCA Report which shows the original alumni survey form). The number for 2006 is the average of the responses to the new alumni survey question 2. Since the alumni survey form was changed, the 2006 number is shown in italics to distinguish it from years 2001 and 2003 to which it is not strictly comparable.

Conclusions and recommendations:
The outcome appears to be achieved to an acceptable level since all scores are above 3.00. Both the students and alumni consider that they have the ability to apply the principles of mathematics, science & engineering in the senior exit and alumni surveys. No changes are required at this time.

Outcome (b): Ability to collect and analyze experimental data

Instruction relative to this objective is addressed primarily in ESC310 – Engineering Statistics and Probability, and IME320 – Engineering Experimental Design, and to some extent, IME410 – Statistical Quality Control. There are many opportunities for the student to use their abilities in the IME design courses, and particularly in the senior capstone experience, IME480 and IME 481.

Results:

<table>
<thead>
<tr>
<th>Response in</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior exit survey for year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compare to a perfect score of 5</td>
<td>4.22</td>
<td>3.90</td>
<td>4.57</td>
<td>4.38</td>
<td>4.67</td>
<td>5.00</td>
</tr>
<tr>
<td>Alumni survey for year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compare to a perfect score of 5</td>
<td>3.11</td>
<td>3.11</td>
<td>3.82</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The number for 2006 is the average of the responses to the new alumni survey question 2.

Conclusions and recommendations:
The outcome appears to be achieved to an acceptable level since it is above 3.00. Both the students and alumni consider that they have the ability to collect and analyze experimental data in the senior exit and alumni surveys. No changes are required at this time.

Outcome (c): Ability to analyze a system, construct a model of it, and design a new system

This outcome is addressed directly by the design courses of IME475 – Systems Simulation, IME477/478 – Facility Planning and Laboratory, and the senior capstone experience, IME480 and IME481.
Results:
Response in

<table>
<thead>
<tr>
<th>Senior exit survey for year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare to a perfect score of 5</td>
<td>4.11</td>
<td>3.30</td>
<td>4.43</td>
<td>3.88</td>
<td>4.67</td>
<td>4.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alumni survey for year</th>
<th>2001</th>
<th>2003</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare to a perfect score of 5</td>
<td>3.67</td>
<td>4.00</td>
<td>3.82</td>
</tr>
</tbody>
</table>

The number for 2006 is the average of the responses to the new alumni survey question 2.

Conclusions and recommendations:
The outcome appears to be achieved to an acceptable level since all scores are above 3.00. Both the students and alumni consider that they have the ability to analyze a system, construct a model of it, and design a new system in the senior exit and alumni surveys.

No changes are required at this time.

Outcome (d): Ability to lead or participate in multidisciplinary team work

This is a somewhat difficult objective to address. Teamwork is regularly prescribed in four program courses. They are, ESC120 – Introduction to Engineering Design, IME475 – Systems Simulation, and IME480 Engineering Design and IME481 – Senior Design. It is unlikely that teamwork with other IME students as in IME475 satisfies the letter of this outcome. However, the other three likely do satisfy this outcome since the students most often work in teams consisting either of students from various disciplines, or as in the case of the senior capstone experience with people from industry or organizations outside the university. For example, in the two course sequence, IME480 and IME 481, students work in teams with mentors and employees of companies on projects in a real-world environment.

The college struggles with this objective as well, and is looking at finding projects which require interaction with students of business, mathematics, economics, computer science or other engineering disciplines.

Results:
Response in

<table>
<thead>
<tr>
<th>Senior exit survey for year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare to a perfect score of 5</td>
<td>4.11</td>
<td>4.00</td>
<td>4.57</td>
<td>4.25</td>
<td>4.00</td>
<td>4.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alumni survey for year</th>
<th>2001</th>
<th>2003</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare to a perfect score of 5</td>
<td>3.33</td>
<td>4.67</td>
<td>4.06</td>
</tr>
</tbody>
</table>
The number for 2006 is the average of the responses to the new alumni survey questions 2, 3 and 4.

Conclusions and recommendations:
The high scores by the seniors and the 2003 alumni survey are attributed to the superb job being done by Dr. L. Kenneth Keys who began teaching IME480/481 in 2001. Note that the alumni responding to the 2001 survey (who reported a lower level of achievement) took their engineering and senior design sequence in 1999 prior to Dr. Keys’ tutelage. For the past three years, the senior design projects and presentations have been among the best the department has accomplished.

The outcome appears to be achieved to an acceptable level since all scores are above 3.00. Both the students and alumni consider that they have the ability to lead or participate in multidisciplinary team work.

No changes are required at this time.

Outcome (e): Ability to identify, formulate, and solve engineering problems

Results:

Response in

<table>
<thead>
<tr>
<th>Senior exit survey for year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare to a perfect score of 5</td>
<td>4.56</td>
<td>3.70</td>
<td>4.43</td>
<td>4.25</td>
<td>4.67</td>
<td>5.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alumni survey for year</th>
<th>2001</th>
<th>2003</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare to a perfect score of 5</td>
<td>3.67</td>
<td>5.00</td>
<td>3.82</td>
</tr>
</tbody>
</table>

The number for 2006 is the average of the responses to the new alumni survey question 2.

Conclusions and recommendations:
The outcome appears to be achieved to an acceptable level since it is above 3.00. Both the students and alumni consider that they have the ability identify, formulate, and solve engineering problems.

No changes are required at this time.
Outcome (f): Understanding of professional and ethical responsibilities

This outcome is directly addressed by the GenED course, PHL215 – Engineering Ethics, but is also included to some degree in IME480 – Engineering Design.

Results:

Response in

<table>
<thead>
<tr>
<th>Senior exit survey for year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare to a perfect score of 5</td>
<td>3.78</td>
<td>4.00</td>
<td>4.86</td>
<td>4.50</td>
<td>4.33</td>
<td>4.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alumni survey for year</th>
<th>2001</th>
<th>2003</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare to a perfect score of 5</td>
<td>3.83</td>
<td>4.00</td>
<td>NA</td>
</tr>
</tbody>
</table>

There is no corresponding alumni survey question in the new 2006 survey.

Conclusions and recommendations:

The outcome appears to be achieved to an acceptable level since it is above 3.00. Both the students and alumni consider that they have an understanding of professional and ethical responsibilities.

However, we note that there have been comments by students (one documented in the 2004 senior exit survey) that the instructors in the Philosophy department do not understand the issues engineers must face and so this outcome could be better addressed if taught by an experienced engineer.

This issue remains as a future action item.

Outcome (g): Effective communication skills

Instruction relative to this objective is indirectly addressed by ENG101 – English I, and ENG102 – English II. It is directly addressed by the curriculum in the required program course COM242 – Public and Professional Speaking. Practical application comes in IME480 – Engineering Design, and IME481 – Senior Design. The course COM242 – Public and Professional Speaking, is taught by professionals from the Communications department. Here, students get practice in selecting and researching a topic for presentation, writing an outline, and paper, preparing the presentation and delivering it to the class. The students’ topic, outline, paper, and presentation are critiqued, revised and redone as many times as the instructor believes necessary. The effectiveness of this experience on the ability of our students to make good organized presentations has been profound, as is evidenced in the outstanding good senior design presentations over the past six years (2002 through 2007).
Results:

Response in Senior exit survey for year 2002 2003 2004 2005 2006 2007 compare to a perfect score of 5 3.67 4.01 4.71 4.38 4.67 4.75

Alumni survey for year 2001 2003 2006 compare to a perfect score of 5 3.33 4.00 4.18

The number for 2006 is the average of the responses to the new alumni survey question 3.

Conclusions and recommendations:

We conclude that the good performance and increase in achievement level in 2003 are due in part to the inclusion of COM242 in the curriculum, and the excellent job being done by the instructor of IME480 and IME481. Note that the lower score for 2001 alumni is attributed to the fact that none of these students 2001 had the COM242 course, and none had the most recent assigned instructor of senior design.

In the next program revision, we will work to include the technical writing course in the curriculum. Until then, no changes are recommended.

Outcome (h): Understanding of the global/social impact of engineering solutions

This outcome is primarily addressed by the five university required GenED electives. It is also addressed to some extent in ESC282 – Engineering Economy, and PHL215 – Engineering Ethics.

Since the students have over 100 courses to choose from to satisfy their GenED requirements, it is difficult for us to have a direct impact on this outcome. The best we can do is to recommend to our students, those courses that appear to address the issues.

Results:

Response in Senior exit survey for year 2002 2003 2004 2005 2006 2007 compare to a perfect score of 5 3.33 3.90 4.71 3.50 4.67 4.25

Alumni survey for year 2001 2003 2006 compare to a perfect score of 5 4.17 3.33 3.73

The number for 2006 is the average of the responses to the new alumni survey question 5.
Conclusions and recommendations:
Since all scores are above 3.00, the outcome appears to be achieved at an acceptable level. As students, they take two human diversity classes, and western civilization and nonwestern civilization courses so they should at least know something about impact of events (though not necessarily engineering) on society.

With the relatively lower scores in 2003, and 2005 we need to find better ways to impact this outcome. This will remain an item for future action.

Outcome (i): Commitment to engage in lifelong learning
This outcome is considered to be addressed by the university GenED electives and to some extent by IME480 – Engineering Design.

However, to date we have not found a direct way to influence this outcome, although a measure that this is being accomplished is the number of students and alumni who belong to professional societies and participate in professional activities.

Results:

Response in
Senior exit survey for year	2002	2003	2004	2005	2006	2007
compare to a perfect score of 5 | 3.89 | 3.90 | 4.57 | 4.00 | 5.00 | 4.75

Alumni survey for year | 2001 | 2003 | 2006
--- | --- | ---
compare to a perfect score of 5 | NA | NA | 3.37

This data was not directly solicited prior to 2006, so there are no entries for 2001 or 2003. The number for 2006 is the average of the responses to the new alumni survey questions 5 and 6.

Also, the majority of our Industrial Engineering students belong to the IIE (Institute of Industrial Engineers), and several belong to the other student organizations of SME (Society of Manufacturing Engineers), ASQ (American Society for Quality), and APICS (American Production and Inventory Control Society). There are student chapters of IIE (sponsored by the IME Department) and APICS (sponsored by the OMS Department in the Business School), but there are no student chapters of SME, or ASQ on campus at this time.

Conclusions and recommendations:
Since the percentages of participation by our alumni is relatively high, and the outcome is perceived by the students to be achieved at an acceptable level, no changes are planned at this time.
We will continue to look for ways in which to affect this outcome, and continue to track
the progress of our students and alumni. We also look forward to viewing the 2005 alumni
survey to be conducted later this summer.

Outcome (j): Knowledge of contemporary issues

With the myriad of issues that impact and are impacted by engineering, it is difficult to
keep abreast of what to introduce, except when an issue is brought to attention through
the journals such as Industrial Engineering. Issues such as environmentally green
buildings, RFID (radio-frequency identification) as stressed by WalMart, and
sustainability of products and technologies are topics discussed in IME 477 – Facility
Planning, and IME 480 – Engineering Design, but there is no systematic effort to address
contemporary issues in the curriculum.

Once again, we rely on the university GenED electives, and PHL215 – Engineering
Ethics to address this outcome to some extent.

Results:

Response in

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior exit survey for year</td>
<td>3.78</td>
<td>3.30</td>
<td>4.71</td>
<td>3.88</td>
<td>4.33</td>
<td>4.25</td>
</tr>
<tr>
<td>compare to a perfect score of 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2003</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumni survey for year</td>
<td>3.83</td>
<td>2.67</td>
<td>3.73</td>
</tr>
<tr>
<td>compare to a perfect score of 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The numbers in the alumni table above are the average of the responses to question 5.

Conclusions and recommendations:

Scores of 3.00 or above are acceptable but the 2003 alumni survey response appears
significantly lower than other scores. Without a rational basis for affecting this outcome,
we do not know why the significant drop in the assessment score, and are unable to affect
an improvement. Should these relatively low scores continue, we will focus on new ways
to measure and affect this outcome.

We will continue to search for ways to bring contemporary issues to the students,
particularly in the design courses.

**Outcome (k): Ability to apply techniques, skills and modern engineering tools and
practices to IE problems and situations**

Instruction and practice in the application of modern industrial tools and concepts is
addressed primarily in all of the 400 level IME courses and particularly the ARENA
Simulation language in IME475 - Systems Simulation, MiniTAB in IME 410 – Statistical

Results:

Response in Senior exit survey for year 2002 2003 2004 2005 2006 2007 compare to a perfect score of 5 3.33 4.00 4.57 4.00 5.00 4.75

<table>
<thead>
<tr>
<th>Alumni survey for year</th>
<th>2001</th>
<th>2003</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>compare to a perfect score of 5</td>
<td>3.44</td>
<td>3.50</td>
<td>3.82</td>
</tr>
</tbody>
</table>

The numbers in the alumni table above are the average of the responses to question 2.

Conclusions and recommendations:

The scores are all above the acceptable level and we attribute this at least in part, to the IME480/IME481 experience.

We have no plans for any changes, at this time.

Integrated Design Experience Assessment

Elements of engineering design are integrated throughout the curriculum through the student homework, projects, and especially thorough design courses such as IME475 – Systems Simulation, and IME477 – Facility Planning.

But the ability to perform as an engineer in a real world environment is culminated in the two course sequence IME480 – Engineering Design, and IME481 – Senior Design, which constitute the senior capstone experience.

Thus, the outcomes assessment by the faculty teaching IME481 – Senior Design, is of paramount importance. IME 480/481 – Senior Design has been taught by Professor L. Kenneth Keys for the past three years and he has been very successful in obtaining good design projects for the seniors in the local service organizations and industries, and matching student teams with company mentors.

The instructor uses the Outcomes Assessment Survey Questions Form (Appendix I.D exhibit 9) for his/her assessment. The assessment consists of an appraisal of achievement of the program outcomes a through k, and any corresponding comments. The assessment results for 2002 though 2004 follow. The assessment values are calculated by the same weighted average equation as in section 3.1 Outcomes Assessment. Four of the outcomes, f. Understanding of professional and ethical responsibilities, h. Understanding of the global/social impact of engineering solutions, i. Commitment to engage in lifelong
Instructor’s Outcomes Assessment

<table>
<thead>
<tr>
<th>Year</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>27</td>
</tr>
<tr>
<td>2003</td>
<td>35</td>
</tr>
<tr>
<td>2004</td>
<td>35</td>
</tr>
<tr>
<td>2005</td>
<td>32</td>
</tr>
<tr>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>NA</td>
</tr>
</tbody>
</table>

Instructor’s Comments

Class of 2002:

- Most of the senior students are still completing their program on the old (quarter or semester) curriculum. We won't begin to see the benefits from our new curriculum until about 2003-2004.
- The students need more project management experiences, project planning, teaming.
- I will strengthen the course with new text, syllabus, and required team experiences.
- Require use of project management (Primavera) now available in the CAD Lab.

Class of 2003:

- This year's students performed admirably as demonstrated by the Projects, Project Reports, Presentations and outside company PI's assessments.

Class of 2004:

- This years students in general performed exceptionally well as demonstrated by the completeness of the projects, project presentations, project reports, and outside agency partner comments.
Based on my discussions with the students, and their feedback over the past two years, I have decided to change the first semester (IME480) text and the nature of this course. I will make it more of a discussion of the engineering profession, practice, their expectations, and their role in an organization, as well as reflecting on the specific IE roles and opportunities.

Class of 2005:

- These students did quite well but could use a better understanding of systems analysis and project management to better prepare them for an increasing complex technological world.

Class of 2006:

- These students did quite well but could use a better understanding of systems analysis and project management to better prepare them for an increasing complex technological world.

Class of 2007:

- These students did quite well but could use a better understanding of systems analysis and project management to better prepare them for an increasing complex technological world.

Conclusions and recommendations:

The instructor has made the IME480/IME481 capstone experience a good one for the students, but it appears that the essential topic of project management does not appear early enough in the curriculum to be helpful in their senior design project.

We also note that the metric for measuring the success of the senior design capstone experience remains not as discriminating as it could be. Observe that the assessment score for 2003 and 2004 is 35 (the maximum possible) indicating the unlikely condition that no improvement is possible.

We will attempt to refine this assessment method in the future.

Visiting Committee Evaluation and Comments

The IME department’s 2006 visiting committee members consisted of professionals from a variety of companies and organizations. In 2003 the members numbered 13, from organizations including Lorain Community College, Nestlé, Lincoln Electric, Parker Hannifin, KERBY Vacuum, Roadway Express, Xerox, Castle Metals, and Ford Motor Company.

However, the visiting committee was reconstituted for 2005-2006. Six of the current members have changed jobs, been promoted or moved out of Ohio. This will be an item for action this academic year.

In 2002 the department held two visiting committee meetings, one each in the fall semester and one in the spring. At those meetings, the committee reiterated the need for the program to include formal instruction on the topics of Simulation, and Human Factors. The department had already changed the curriculum to require the two
previously elective courses (IME475 – Systems Simulation, and IME405 – Industrial Ergonomics) as required courses.

Since the attendance at the spring meeting in 2002 was very low, the department decided to call only one meeting per year rather than two, and call that meeting in the spring in concert with the day of the Senior Design Project Presentations.

The 2003 meeting was held on May 2, 2003 and was attended by only five visiting committee members. Some attended the senior design project presentations and were favorably impressed.

Members of the committee commented on the need for students to have a good knowledge of logistics, and to remain on the cutting edge of technology; because of the competition and off-shore sourcing. Also emphasized were the importance of cost competitiveness; lean manufacturing, robotics, and automation. Competitiveness is forcing companies to look beyond traditional means of reducing costs.

No visiting committee meeting was held in spring 2004. Furthermore, since the time the last committee was constituted several of the members have been promoted, or moved on to other companies. Therefore, the visiting committee needs to be reconstituted. This will be done during the forthcoming academic year.

Actions

The information obtained through the assessment process is reviewed by the faculty and discussed in department meetings throughout the year as the data become available.

Through our observation of the students and comments made by our alumni, we became aware of shortcomings in our program and therefore have made revisions to the program. These revisions are:

- ENG105 – Writing Center was added, to strengthen the student’s communication skills.
- The department course, IME 300 – Introduction to Industrial Engineering, was removed from the curriculum. The original intention of this course was to attract students to study Industrial Engineering. However, it did not work since only Industrial Engineering majors took the course.
- Changes in the curriculum by the Mechanical Engineering Department, resulted in changes in an ESC course where elements of linear algebra were taught. Since Industrial Engineering students need instruction on this topic as a prerequisite for IME330 – Operations Research I, the department added MTH284 – Matrices for Engineers, as a required program course.
- To keep the number of credits for the Bachelor of Industrial Engineering to under 130 semester hours, and yet strengthen our student’s ability to communicate, the department dropped ESC315 – Electrical Concepts from the curriculum and added COM242 – Public and Professional Speaking.

In retrospect, this does not seem to be a good idea since the students now have no course where they gain knowledge of AC circuits. A basic understanding of AC circuits is
necessary for students who go onto work with sensors and automation. We will be working to revise the curriculum, possibly reorganizing and combining some of our courses so we can reinstitute ESC315 as a required course.

- At the recommendation of our alumni, and the visiting committee, who recommended that the program include courses on Simulation and Ergonomics, two of the four technical elective courses were removed, and replaced with two required courses: IME 475 – Systems Simulation, and IME405 – Human Factors Engineering.

- Due to a change in curriculum by the Mechanical Engineering Department, and during the 2001-2002 academic year, the Fenn College stopped offering ESC101 – Graphical Concepts. This was of great concern to the Industrial and Manufacturing Engineering Department, since a knowledge of AutoCAD is necessary to be able to use FlowPATH Calculator (an AutoCAD software add-on package) in IME478 – Facility Planning Laboratory.

- Therefore, in Fall of 2003 the department added the one credit laboratory course: IME101 – Introduction to CAD, where basic instruction and practice of AutoCAD is given.

- Also in 2002, the name of IME405 – Human Factors, was changed to IME405 – Industrial Ergonomics, and two courses previously taught under the generic department number of IME499 – Special Topics, were instituted as regular technical electives. These courses are: IME471 – Operational Level Scheduling and IME474 – Expert Systems for Engineers.

No other major changes have been made since Fall 2003.

Summary of Assessment Results 2002-2005

The department uses six methods to assess the achievement of our program outcomes. They are:

1. Curriculum review
2. Integrated design experience
3. Participation in professional organizations and activities
4. Senior exit survey
5. Alumni survey
6. Visiting committee assessment

By our standards for acceptability (3.0 on a 5 point scale) we have achieved all the outcomes and therefore meet all program goals.

Conclusions
The industrial engineering program is adequate to achieve the educational objectives but it can be improved. Regarding the assessment process itself, the benchmark level of achievement (3.0 on a 5 point scale) is probably not high enough since it does not discriminate between high-quality and average performance. The rationale is that although we have achieved all program outcomes to an acceptable level, there are some outcomes whose level of achievement can be higher.

In particular, the outcomes

(f) – Understanding professional and ethical responsibilities
(g) – Effective communication skills
(h) – Understanding of the global/social impact of engineering solutions
(i) – Commitment to lifelong learning
(j) – Knowledge of contemporary issues

All could be improved by addressed them with better metrics and judicious programmatic changes. We will work to refine the assessment process, to develop better metrics, and find ways to implement and track changes.

Regarding the program, it is apparent through this assessment process that some changes are needed. In next program revision we will work to include a technical writing course, preferably taught by a professional technical writer, and we will work to restore ESC315 – Electrical Concepts, as a required course. To accomplish this, we will conduct a critical review of the content of the courses and replace less important topics and methods with topics deemed to be more relevant, and perhaps consolidate some courses.

Finally, to improve the achievement of outcome (f) – Understanding of professional and ethical responsibilities, we will collaborate with other departments in the college to get a practicing engineer to teach engineering ethics, possibly as an ESC course.