Cleveland State University
Department of Electrical Engineering and Computer Science

EEC 693: Emerging techniques for wireless communications and networking

Description: The focus of this course is emerging techniques for future generation wireless networks that are expected to meet stringent requirements for capacity, energy efficiency, quality-of-service, mobility, and connectivity. The course covers in depth the theory behind multi-user multiple-input multiple-output (MIMO) and orthogonal-division multiple access (OFDMA) techniques, and their implementation in current cellular and wireless LAN networks. Moreover, the course introduces concepts and models of cooperation, cognition, and opportunism in communication networks, and demonstrates their potentiality for meeting the above-mentioned requirements, in particular, the need to reliably support high data rate transmissions.

This course requires some knowledge of digital and mobile communications, probability and statistics, linear algebra, and programming in MATLAB.

Course Objectives: The course is designed to enable students to

1) understand the basic and advanced theoretical concepts behind modern digital and wireless communications,
2) mathematically characterize and analyze key stages of information transmission chains from sources to destinations,
3) have in depth knowledge of multiple-antenna systems and their implementation in practice,
4) understand models and concepts behind emerging techniques that aim to significantly improve the current wireless systems.

Schedule: Fall 2015, MW 6:00-7:50 PM, FH 314.

Instructor: Dr. Batu K. Chalise
Electrical Engineering and Computer Science Department
Email: batu.k.chalise@ieee.org

Tentative Course Outline:

1. Introduction (1-week)
 - Digital and Wireless Communications
 - History of Wireless and Cellular Networks
 - Math preliminaries (linear algebra and probability theory)

2. MIMO Communications (2-weeks)
- Introduction
- Instantaneous and ergodic channel capacities
- Channel state information at transmitter (CSIT) or no CSIT
- Degrees of freedom, multiplexing gain
- Water-filling Algorithm
- Diversity gain
- Effect of spatial correlations

3. MIMO Receiver design (2 weeks)
 Linear Receivers: Maximum ratio combining, Zero-Forcing, MMSE
 Non-linear receivers: Maximum Likelihood (ML), successive-interference cancellation

4. MIMO Transmitter Design (1 week)
 Beamforming
 Precoding
 Space-time block codes

5. MIMO-OFDM (2 weeks)
 Multi-carrier transmission
 OFDM modulation (basic principles)
 OFDM demodulation
 OFDM implementation using IFFT/FFT
 OFDM parameters and selection
 Time and frequency synchronization in OFDM
 Peak-to-average power ratio (PAPR)

6. MIMO OFDM for Long Term Evolution (LTE) Communication Systems (2 weeks)
 LTE-core network
 Radio access network
 Time-frequency resource plane
 Duplex schemes
 Downlink reference signals
 Multi-antenna transmission in LTE

 New trends in communications

7. Cooperative Communications (2 weeks)
 Relaying
 Amplify-and-forward, Decode-and-forward, Detect-and-forward relays
 MRC receiver
Diversity gain
MIMO relays
Multiple-access and broadcast transmissions with relays

8. Opportunism in Communications (1 week)
 Time and frequency selection
 Antenna selection
 Direct and relay paths selection
 Relay selection

9. Cognitive radios (1-week)
 Introduction
 Spectrum Sharing
 Sensing-based Spectrum Sharing- detection algorithms
 Power control

10. Miscellaneous (1-week)
 Full-duplex communications: Introduction and concepts
 Large-scale multi-antenna systems: Motivation and models
 Review

Textbook: Instructor’s slides

Suggested References:

Grading Policy:

Midterm: 25%

Homework: 15%

Final: 40%

Project: 20%

Project:

Each student or a group of maximum two students can decide a topic for the project. The topic should cover new techniques in the areas of wireless communications and networking. Each student is asked to do literature survey on existing techniques, describe his/her proposed method, demonstrate results with MATLAB simulations, and make a final presentation of the work among faculty and other students.

Homework:

There will be weekly homework. MATLAB simulations will be part of the homework. Although students are encouraged to work together on the homework, each student must submit his or her original work.